
之前的文章中我们已经将master节点的网络IP、hostname文件、hosts文件配置完成,接下来还有hadoop相关配置文件需要修改。今天我们来讲master节点hadoop的配置。
1、hdfs-site.xml
在hadoop的配置文件中与HDFS(hadoop分布式文件系统)相关的是hdfs-core.xml文件。在伪分布集群中只有一个节点,因此此节点即要有NameNode功能也要有DataNode功能。在工作环境中这两个是不会在一个节点上的,在我们的多节点分布式集群中master只运行NameNode因此需在hdfs-site.xml文件中删除DataNode相关配置。
打开虚拟机在终端中输入cd hadoop/etc/hadoop 命令进入hadoop配置文件目录。
终端输入命令vim hdfs-site.xml进入vim编辑界面,按下图步骤删除原来伪分布集群配置的DataNode相关配置,并将数据冗余数量设置为2。
输入i进入编辑模式,编辑后的文件内容如下所示。
最后退出编辑模式,保存并退出。
2、core-site.xml
在core-site.xml中指定一个节点运行hdfs服务。在之前伪分布集群中只有一个节点,因此我们使用的是localhost,如今在集群中有三个节点,我们约定使用master。
在终端中输入vim core-site.xml按下图操作修改配置文件。
修改后内容如下所示
记得退出并保存。
在yarn-site.xml里可以修改与资源管理模块YARN相关的一些配置。
终端中输入 vim yarn-site.xml进行以下更改,将资源调度管理任务放置于master节点上
最终修改后的文件内容如下图所示。
4、mapred-site.xml
进行以下更改,主要添加mapreduce运行历史记录监控端口和网页端口。
同样,在终端输入vim mapred-site.xml开始编辑配置文件,配置内容如下所示
最后保存并退出。
5、slaves
slaves文件指明哪些节点运行DateNode进程,这里我们的集群中运行DataNode进程的节点有slave1、slave2。因此需将这两节点保存到slaves文件中。
在终端中输入 vim slaves命令编辑文件,编辑后的文件内容如下图所示。
最后保存slaves文件并退出编辑。到这里master节点上的hadoop相关配置已经完成了。
接下来我们要通过克隆master及slave1虚拟机来扩展集群。
6、生成slave1节点
通过克隆master 生成slave1节点的过程与之前克隆伪分布节点的操作是一致的这里不再赘述,唯一区别是在执行到下图步骤时注意将虚拟机名称设置为slave1并选择正确的存储位置方便管理。还有一点,被克隆的虚拟机一定要关机状态才可以被克隆。
slave1节点与master节点在hostname、IP地址、Hadoop配置这几个方面是有些差异的,在复制好slave1节点之后需进行配置。
6.1 配置IP地址
在前面文章中提到过slave1节点IP地址应设置为固定的值:192.168.79.12。详细的配置方法步骤已经在配置master节点时介绍过,配置slave1节点时可以参考一下。修改完成后的配置结果如下图所示,点击save保存即可。
6.2、修改hostname
保存并退出
6.3、修改Hadoop配置项
hdfs-site.xml
保存并退出之后重启slave1节点查看配置是否生效。
7、生成slave2节点
Slave2与slave1在Hadoop相关配置内容上是一致的,因此通过克隆slave1节点来生成slave2可以减少一些操作步骤。
克隆slave1节点时的操作步骤同样参考之前文章内容,区别是执行到下图步骤时记得更改虚拟机名称为slave2并更改存储目录(存储目录自己定义)。
7.1、配置IP地址
克隆完成后打开slave2虚拟机并配置其IP地址。配置过程与之前配置master节点IP过程一致,只是IP地址需改为192.168.79.13结果如下图所示,点击save保存即可。
更改Hostname,在终端中输入sudo vim /etc/hostname并回车执行,根据提示输入密码
输入i编辑hostname文件,文件内容如下所示为slave2,然后保存退出。
重启虚拟机测试配置是否生效,重启命令为sudo reboot
slave2重新启动后打开终端,输入命令ifconfig查看IP设置及虚拟机名,如下图所示配置已经生效。
到这里我们的hadoop集群安装配置完成。接下来的文章我会给大家介绍一下hadoop集群如如何启动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28