京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着大数据时代的到来,企业管理者对数据价值的重视度越来越高,他们渴望从企业内外部数据中获得更多的信息财富,并以此为依据,帮助自己做出正确的战略决策,数据分析技能被应用在诸如互联网、金融、电商、市场、运营等各行各业。因此,掌握数据分析相关技能已经成为大数据时代的重要加薪砝码。
具体来说,你需要掌握以下的知识技能来提升大数据时代的职业竞争力。
1.统计学思想和方法
如果拥有出色的工具使用技能,但是不会解读数据,那又有什么用呢?对数据分析来说,了解统计学知识很关键,包含描述性统计学和推断性统计学。统计学更多地是提供解决问题的思路,在你未来的工作中会显得越来越重要。
2.SQL数据库查询语言
不光是数据分析,当下大部分的岗位中,诸如产品经理、市场运营等岗位。SQL都被列为一项重要的技能。你需要知道如何从关系型数据库(诸如Mysql,Oracle,Sql Server)中提取出你自己需要的数据。
俗话说,工欲善其事必先利其器。这个依据你的行业和兴趣而定。如银行、医药行业多用SAS,市场咨询、电信等行业偏爱SPSS。如果你对编程感兴趣,那么它是让数据分析师超越业务分析师之上的核心技能,你需要熟练掌握一到多门编程语言,从 Python 或 R 开始。
如果你是数据分析师或者对数据分析感兴趣,你不需要发明新的机器学习算法,但是你应该了解这些领域的常见概念。一些示例包括主成分分析、神经网络、支持向量机和 K 均值聚类。你需要掌握监督式学习和非监督式学习的方法。
5.大数据分析能力
如果你的企业面临的数据量级足够大,而且你对大数据分析感兴趣,那么你需要了解大数据存储和分析的工具,诸如hadoop,Spark等技术。
6.数据可视化能力
如果你无法清晰有效地传达你的想法,那么你的数据分析繁琐工作不会受到任何认可。熟悉诸如 Power BI、Tableau、GGplot、Matplotlib、Seaborn 等任何一款数据可视化工具将会有帮助。要取得成功,你还需要完全了解业务背景,以便知道如何调整你的数据可视化结果,使其具有最高的关联性。
数据分析是一个快速发展的学科,以上的也可能会有所偏驳。如果你对任一技能感兴趣并潜心学习,都足够成为大数据时代的加薪砝码,成为企业的抢手人才。当然,除了技术能力以外,你还需要掌握数据之外的必备能力。
1.抽象思维能力:数据分析师的任务不该止步于技术开发,他们更大的价值是培养抽象思维能力。具体来说是将一个虚无缥缈的概念剖开,成为数据可以解答的问题⸺建立框架和分析角度,分解分解大而全的问题,用数据分析给出小而美的答案,进一步将其变成产品建议,进而为高层提供决策依据;
2. 沟通技能:数据分析师在数据获取、分析、洞察及实施各个阶段都需要业务团队及高层的配合,因而,数据团队对成员的沟通技能有较高要求:在合作初期,数据团队需要具备发现业务团队需求的沟通力;合作中,尽快让业务团队建立起对数据团队的信任感并克服其抵触感;拿到分析结果后,数据团队应总结洞察并提出业务建议,精准且有效率地与决策者沟通,辅助其决策;最终,数据团队应配合业务和高层将相关分析结果实施落地;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17