京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析这个技能,到底能不能速成
没有任何牛逼的事情是能够速成的,越是像数据分析这种收益周期长的技能,掌握起来越是这样。
但这并不代表,我们不能以一些更有效的方式,把学习的过程变得高效而有趣。
学习一门技术之前,你应该知道,你想要达成的目标是什么样的,也就是说,你想通过这门技术来解决哪些问题,应用在哪些行业,哪些业务场景下。只有这一点想通了,你的数据分析之路的学习才是高效的、有目的的、有意义的。
CDA数据分析师自2013年成立以来,培养了上万名学员跻身数据分析师行列,我们通过对部分学员的需求表进行文本分析,让我们来看看学习数据分析的学员都想学什么?
一、 学习目标分析&学习结果
从关键词和文本摘要提取可以得到学员学习目标主要为:
A. 掌握数据分析&数据挖掘理论、方法和实践;熟练掌握统计分析软件如
SPSS,SAS,SPSS,R 等;—成为优秀的数据分析师;提升职业竞争力;
B. 应用数据分析于学术、商业领域的实践,解决实际问题;
C. 就业考证,升职加薪;
D. 掌握数据分析实战能力,实现转行。
二、学员行业及公司背景
通过上述 word2vec 图和词云图,可以看出CDA 的学员来自于各行各业,数据分析是一个具有广泛应用和发展前景的行业,有的来自于工业,如化工、航天、能源、制造业;有的来自于财经行业,如证券、新闻、新华网、人民日报;有的来自于娱乐及服务行业。
三、应用领域分析&业务具体问题分析
通过关键词词云和摘要提取可以发现大部分学员比较有目标性,学习的需求全部来自于工作中实际的业务需求。业务主题如:银行信用贷款、客服管理分析、用户行为分析、用户习惯分析、客户关系管理理等。
有了这些目标,下面你需要知道要达成这样的目标,它的知识体系是怎么样的。只有明确的目标导向,配合以最体系化的学习内容,学习最有用的那部分知识,才能避免无效信息降低学习效率,找到成为企业雇主喜爱的数据分析师的最快路径。
根据数据挖掘标准流程CRISP-DM,数据挖掘流程是一个多部门协同产生价值的过程。从业务部门的资讯需求到内外部的数据整合与获取,建置数据仓库,数据挖掘,报表呈现。最终形成可实施的报告或者与工程师合作产生数据产品。
因此,我建议你的学习路径如下(以非编程类分析软件为例):
数据分析是一个快速发展的领域,无论你是刚刚起步还是想拓展现有技能,数据分析师要投入的精力都很多,但是我们保证,回报却更高。
如果你是一个自制力很强而且自身学习极有规划性,那么通过上述的大纲和网上资料教材等自学,你可以很快跻身数据分析师这样一个富有魅力和挑战性的行业。
如果你自身的自制力很弱,面临自学知识难以系统升华?自学过程无人指导?遇到瓶颈无法突破?那么,我们为你设计了一套完整学习方案。
CDA数据分析研究院结合市场和学员需求,首推【CDA数据分析师-周末集训班】课程。职场数据分析师完整学习解决方案,三个月周末学习,顶尖师资带领每周案例实战,毕业分组项目竞技。名额有限,欢迎报名参加!
一、课程信息
北京&远程:2017年12月16日~3月18日(3个月周末)
课程费用:现场班9900元,远程班7900元
授课形式:现场(远程)与视频结合,长期学习加练习答疑。
二、 报名流程
1.在线填写报名信息
2. 给予反馈,确认报名信息
3. 网上缴费
4. 开课前一周发送电子版课件和教室路线图
三、 课程安排
第一阶段:[线下]Mysql数据库管理
第二阶段:[线上]数据分析之数理统计知识P1
第三阶段:[线上]数据分析之数理统计知识P2
第四阶段:[线下]SPSS数据分析P1
第五阶段:[线下]SPSS数据分析P2
第六阶段:[线下]SPSS案例分析
第七阶段:[线上]Tableau数据可视化
第八阶段:[线上]期中项目作业
第九阶段:[线下]SPSS Modeler数据挖掘P1
第十阶段:[线下]SPSS Modeler数据挖掘P2
第十一阶段:[线下]期末毕业答辩
(详细大纲参照原文链接)
四、课程优惠
4.以上优惠不叠加
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07