京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA&中国工商银行股份有限公司数据挖掘内训圆满成功
2017年9月18-20日,CDA数据分析研究院在中国工商银行股份有限公司数据中心(上海)进行了一场以“Python语言数据挖掘应用”为主题的内训。培训班在嘉定园区开课,西三旗园区、外高桥园区和上海分行信息科技部远程视频参加,中心各部门员工报名积极,共有95名员工参加了集中培训。老师和数据分析部门的相关同事进行积极地交流学习,最后都收获了不少学习成果。
内训企业介绍
中国工商银行股份有限公司数据中心(上海)
中国工商银行股份有限公司数据中心(上海)[以下简称数据中心(上海)]为总行直属机构,于2000年11月10日正式挂牌成立。数据中心(上海)承担全行信息系统生产运行及灾备管理的职能,建立了全球领先的核心生产环境,形成了基于ITIL理念的生产运维体系,为工商银行境内外机构提供数据服务,并与500多家第三方机构相连接。
满足更高标准的业务连续性运作和系统可用性要求,工商银行在国内同业率先启动“两地三中心”工程建设。数据中心(上海)在上海外高桥、嘉定,以及北京西三旗三个园区建成两个并行运行、快速接管的同城数据中心和一个异地灾备中心,实现了最高等级的灾备部署,保证信息系统全年365天,全天24小时不间断运行。
十多年的奋勇开拓,不仅铸造了数据中心(上海)强大稳定的信息系统,更锤炼出一支锐意进取、追求卓越的人才团队。我们汇聚人才,更执于培养人才。我们引领改变,更擅于掌控改变。我们开拓视野,更乐于分享视野。我们追寻梦想,更敢于触动梦想。
内训内容简介
整场内训气氛和谐,参加内训的学员都表示收获颇多。
第一阶段:Python 基础学习
1. 语法初步
2. 列表、字符串和元组
3. 集合与字典
4. 条件和循环语句
5. 若干重要内置函数应用
6. 文件操作
7. 函数及其应用
8. 正则表达式
9. 数据库和 Python
10. 排序算法、 动态规划算法、递归算法等算法
1. 整理数据(切片、产生随机数、复制、广播、排序等)
2. 数据索引和选择的各种方法
3. 数据的分组、分割、合并、变形
5. 时间序列数据处理、建模和预测(ARIMA)
6. 含中文数据的处理
7. 数据去重、去离群值
8. R语言和Python(pandas)数据整理和建模的比较
9. 描述统计和推论统计分析
1.Logistic 回归模型对文本的分类
2.图片结构和分析(图片的K-means聚类分析)
3.图片的识别和分类:PCA建模
4.二维手写数字识别(KNN方法)
6.数据可视化的各种情形
7.新闻的文本分类(TF-IDF准则、旅游新闻个性化推荐)
8.手写识别
9.朴素贝叶斯(Naïve Bayes)决策
10.酒的品质分类预测
11.机器学习的格点搜索和参数寻优
12.惩罚线性回归分类器
13.使用支持向量机识别和分类
14.金融时间序列预测(非ARIMA方法)
15.机器集成学习算法
16.随机模拟、用户流失预警、量化投资实战
学员评价
老师通过数据分析工作中遇到的典型数据分析和挖掘案例进行深刻地分析,即使是初学者也能快速掌握Python 数据分析和数据挖掘(含机器学习)的思想和方法,形成科学有效的知识和能力结构体系框架。
企业领导评价
本次培训内容丰富,基本涵盖机器学习常用算法和方法。通过集中培训和学习,学员们纷纷表示受益匪浅,对机器学习有了更深入了解,并且提升了动手实践能力。后续在数据分析实践中,结合我行业务和运维场景需要,使用所学的只是和方法更好的解决问题。同时希望后期与CDA数据分析师在专题类课程多交流,CDA认证、项目咨询等多方面达成更深入合作。
内训咨询
手机/微信:13121318867
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12