京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS正交试验设计及其方差分析
试验优化设计,指在最优化思想的指导下,进行最优设计的一种优化方法,从不同的优良性出发,合理设计试验方案,有效控制试验干扰,科学处理试验数据,全面进行优化分析,直接实现优化目标。
正交试验设计是试验优化的常用技术,在农业试验、工业优化、商业优化等方面应用已久。主要优点是能在多试验条件中选出代表性强的少数试验方案,通过对这些少数试验方案结果的分析,从中找出最优方案或最佳生产工艺条件,并可以得到比试验结果本身给出的还要多的有关各因素的信息。
SPSS软件不仅具有包括数据管理、统计分析、图表分析、输出管理等在内的基本统计功能,而且用它处理正交试验设计中的数据程序简单,分析结果明了。
【实施正交试验设计的步骤】
1、明确试验目的,确定考核指标
明确通过正交试验想要解决什么问题,确定用来衡量试验效果的评价指标,并详细描述出评定该指标的原则标准、测定指标的方法重要信息。
2、挑因素,选水平
有依据的选择引起指标变化的影响因素,因素在试验中的各种状态称为因素的水平。尽量选择适用于人为控制的和调节的影响因素,最后列出因素水平表。
3、选择合适的正交表
在能够安排下试验因素和交互作用前提下,尽可能选用较小的正交表,以减少试验次数和成本的消耗。
4、进行表头设计
表头设计即将试验因素安排到所选正交表的各列中去的过程。正交表中的任意一列的位置是一样的,可以任意变换,因此不考虑交互作用的情况下可直接将所有因素安排在任意一列;如果考虑交互作用,则必须按照交互作用列表的规定进行配列;为避免混杂,那些主要因素重点考察的因素涉及交互作用较多的因素,应优先安排;特别注意,尽可能安排空列,用于反映试验误差,并以此作为衡量试验因素产生的效应是否可靠的标志。
5、排出试验方案
表头设计完成后,将所选正交表中各列的不同数字换成对应因素的相应水平,形成试验方案。试验方案中的试验号并不意味着实际进行试验的顺序,一般需同时进行,若条件不允许,为排除外界环境干扰,应使试验序号随机化。
6、开始试验,收取结果
按照随机化的试验顺序进行试验,记录结果必备分析。
7、试验结果的统计分析
正交设计的结果分析有两种,一种是极差分析法(直观分析法),只考虑因素间的影响,不考虑试验误差。另一种是方差分析法,是一种精细化分析方法,可采用spss完成。
【SPSS正交试验设计案例】
我们用正交试验的方法,对从中草药虎杖中提取白藜芦醇苷的工艺进行优化。
(1)明确目的,确定指标:这是工艺优化的案例,目的在于通过试验,寻求优选白藜芦醇苷的最佳提取条件,白藜芦醇苷提取的效果指标为白藜芦醇苷含量。
(2)挑因素,选水平:根据专业知识及参考文献知识,以及正交试验的特点,选定影响水提取法的3个因素,加水量、煎煮时间、煎煮次数,每个因素3个水平,列出因素水平表如下:
(3)选择正交表:此为3水平试验,并不考虑交互作用,有3个因素需要占据3列,预留一个空列作为误差的话,标准正交表L934是最合适的选择。
(4)表头设计:不考虑交互作用,因素可占据任意列。
(5)排出试验方案:方案及试验结果如下表,第六步省略。
(7)试验结果的方差分析:为考察试验的误差及精细效果,我们直接采用SPSS方差分析来对此试验进行结果分析。
A:方差分析的步骤
B:不考虑交互作用,只考察各因素的主效应
C:方差分析结果解读
由方差分析可知,影响因素中加水量和煎煮次数两个对提取白藜芦醇苷具有显著的影响,而煎煮时间这个因素对其的影响较小。3个因素的主次关系是:煎煮次数>加水量>煎煮时间。
D:影响因素的哪个水平最好?可以通过绘制出的图直观的看出,也可以通过邓肯氏检验来解答,这里我们仅列出直观图。
通过上图,我们可以非常直观的看出,从三个因素中选择最好的水平,得到最佳组合为A3B2C3,即加水量12,煎煮时间1.5小时,煎煮次数3次。
使用SPSS统计软件包对L9(34)正交试验结果进行数据处理,只要按正交表的设计格式输入实验数据,便可获得所需的统计结果。其操作方便,直观,快捷,结果准确,使研究工作事半功倍,此法也可用来处理其他正交试验的数据。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27