
DATA=数据集名 指明要分析的SAS数据集,缺省时SAS将使用最近建立的
数据集.OUTSTAT=输出数据集 指定分析计算结果输出的数据集名.
MODEL y=a 单因素一元方差分析
MODEL y=a b 双因素无交互作用一元方差分析
MODEL y=a b a*b 双因素有交互作用一元方差分析
GLM 即广义线性模型(General Liner Model)过程,对于非平衡数据,应采用GLM过程.它使用最小二乘法对数据拟合广义线性模型. 该过程功能强大,可用于多种不同的统计分析中. GLM过程用于方差分析时,主要语句和使用格式与上述ANOVA过程类似 .
2. 应用实例
一个工厂用三种不同的工艺生产某种电池. 从三种工艺生产的电池中分别抽取5个样品,测得样品寿命的数据如下(单位小时):
|
工艺1 | 工艺2 | 工艺3 |
1 | 40 | 26 | 39 |
2 | 46 | 34 | 40 |
3 | 38 | 30 | 43 |
4 | 42 | 28 | 48 |
5 | 44 | 30 | 44 |
我们要研究的指标是电池的寿命,工艺是影响寿命的一个因素,三种工艺分别是该因素的三个水平. 在试验中我们假设其它因素都处于相同的状态. 这里我们希望利用上面得到的数据来考察“工艺”的不同是否对“寿命”这个指标有影响?
sas 输入过程
Data exam;
Do I=1 to 5; /*每个处理下5次重复*/
Input x@@;
Output;
End;
End;
Cards;
40 46 38 42 44
26 34 30 28 32
39 40 43 48 50
;
Procanova; /*调用方差分析过程*/
Class trt; /*定义处理为分类变量*/
Model x=trt; /*定义效应模型*/
Title '方差分析';
Run;
sas 结果输出
Analysis of Variance Procedure
Dependent Variable: X
Source DF Sum of Squares Mean Square F Value Pr > F
Model 2 573.33333333 286.66666667 19.77 0.0002
Error 12 174.00000000 14.50000000
CT 14 747.33333333
R-Square C.V. Root MSE X Mean
0.767172 9.847982 3.80788655 38.66666667
以上结果相当于方差分析表, F值为19.77,显著性水平为0.0002,小于0.01,说明各处理间的均值差异极显著.
注:GLM过程与ANOVA应用过程类似,GLM过程中可以进行回归分析、方差分析、协方差分析、剂量反应模型分析、多元方差分析和偏相关分析等等,其功能之强大可见一斑。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04