
交叉列联表(Cross-tabulation)是一种用于展示两个或多个分类变量之间关系的统计表格,在SPSS中也被称为交叉表(Crosstabs)。它将一个变量的不同水平作为行,另一个变量的不同水平作为列,形成行列交叉的表格结构,从而直观呈现变量间的频数分布和关联模式。
确保数据满足以下条件:
分析(A)
→ 描述统计
→ 交叉表(C)...
行(R)
列表框列(C)
列表框层(L)
列表框统计量(S)...
按钮:
单元格(E)...
按钮:
格式(F)...
按钮:
确定
生成结果以某市场调研数据为例,分析性别与购买意向的关系:
购买意向 | 男性 | 女性 | 总计 |
---|---|---|---|
愿意购买 | 120 | 180 | 300 |
不愿意购买 | 80 | 120 | 200 |
总计 | 200 | 300 | 500 |
检验类型 | 值 | 自由度 | 渐近显著性(双侧) |
---|---|---|---|
Pearson卡方 | 0.000 | 1 | 1.000 |
连续校正 | 0.000 | 1 | 1.000 |
似然比 | 0.000 | 1 | 1.000 |
Fisher精确检验 | 1.000 |
统计量 | 值 | 近似显著性 |
---|---|---|
Phi | 0.000 | 1.000 |
Cramer's V | 0.000 | 1.000 |
列联系数 | 0.000 | 1.000 |
某电商平台想了解不同年龄段用户对售后服务的满意度是否存在差异
卡方检验结果:
χ² = 28.456, df = 12, p = 0.004 < 0.05
关联强度:
Kendall's tau-c = 0.152, p = 0.002 < 0.05
交叉列联表(行百分比):
| 年龄分组 | 非常不满意 | 不满意 | 一般 | 满意 | 非常满意 | 总计 |
|----------|------------|--------|------|------|----------|------|
| 18-25岁 | 12.5% | 17.5% | 35% | 25% | 10% | 100% |
| 26-35岁 | 8% | 12% | 30% | 35% | 15% | 100% |
| 36-45岁 | 5% | 10% | 40% | 30% | 15% | 100% |
| 46岁以上 | 3% | 7% | 45% | 35% | 10% | 100% |
通过遵循以上规范和方法,研究者可以有效利用SPSS交叉列联表分析工具,揭示分类变量间的潜在关系,为决策提供科学依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25