京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst)数据分析师认证作为一套科学化、专业化、国际化的人才考核标准,受到了广泛关注。想要报考 CDA 数据分析师,首先要了解其报考条件。CDA 数据分析师认证考试分为 Level I、Level II 和 Level III 三个级别,每个级别对报考者的要求各有不同。
CDA Level I 是入门级认证,主要面向零基础就业转行者、应届毕业生,以及产品、运营、营销等业务岗与研发、技术岗在职者,还有企业创始人、经理人、管理咨询类岗位从业者等。这一级别的报考条件极为宽松,没有任何硬性要求,无论你是刚刚毕业的大学生,对数据分析充满好奇,想要开启新的职业篇章,还是已经在职场摸爬滚打,期望通过掌握数据分析技能实现职业转型的数据爱好者,都能轻松报考 CDA Level I。它就像是一扇敞开的大门,为所有渴望踏入数据分析领域的人提供了一个绝佳的起点 。
CDA Level II 认证针对的是在数据分析领域有进一步发展需求,希望掌握更深入知识和技能的人群。报考 CDA Level II 需要满足以下条件之一:
已获得 CDA Level I 认证:这要求报考者已经通过了 CDA Level I 的考试,获得了相应的认证证书,且通常需要获得 CDA Level I 认证半年以上 。这意味着报考者已经具备了一定的数据分析基础,能够在此基础上进行更深入的学习和提升。通过 CDA Level II 认证,将充分展示报考者在数据分析领域达到了中级能力水平,有能力承担更复杂的数据处理和分析任务,例如能够运用多元统计、时间序列、数据挖掘等理论知识,结合专业分析软件,从海量数据中提取关键信息,并进行建模分析,最终形成逻辑严密的数据分析报告 。
拥有一年以上数据分析岗位工作经验:对于那些没有 CDA Level I 认证,但在数据分析岗位上积累了足够实践经验的人来说,也有机会报考 CDA Level II。丰富的实际工作经验使得他们对数据分析流程、业务场景有着深刻的理解,能够将实践中的问题与理论知识相结合,通过 CDA Level II 认证进一步提升自己的专业素养和技能水平 。
CDA Level III 是高级认证,专为追求在数据分析领域达到专家水平的专业人士设计。这一级别的报考条件较为严格,在新版考试大纲中明确规定,需要逐级通过前一级别的认证才能报考。也就是说,报考者必须先成功通过 CDA Level I 和 Level II 认证,才有资格报考 CDA Level III 。这是因为 CDA Level III 要求报考者不仅要掌握 CDA Level II 的所有理论及技术,还需要深入了解计算机技术、软件开发技术、大数据分析架构及企业战略分析方法等知识体系,能够带领团队完成复杂的数据整合与管理工作,为企业发展提供全方位的数据支持。例如,在面对企业整体数据资产的规划和管理时,能够从战略高度制定有效的方案,通过敏锐的洞察力和判断力,将数据转化为推动企业前进的有力武器 。
报名材料准备:在报名时,报考者需要根据不同级别准备相应的材料。一般来说,报名信息填写需真实有效,包括个人基本信息、学历信息等。报考 CDA Level II 和 Level III 时,如果涉及到前一级别认证证书的要求,需要准备好证书的照片或扫描件,以便在报名过程中上传审核 。
CDA Level I 和 Level II 考试随报随考,考生在报名成功后,可在一年内自行选择时间,预约就近的考试中心进行考试。目前,CDA Level I + II 在中国内地 30 + 省市,70 + 城市设有 250 + 考场,为考生提供了极大的便利。而 CDA Level III 考试一年举办四届,分别在 3、6、9、12 月的最后一个周六,每届考前一个月截止该届报名。考试地点设置在中国内地 30 所城市,如北京、上海、天津、重庆、成都、深圳、广州等 。
CDA Level I 考试时间为 120 分钟,题型为客观题(单选 + 多选),采用上机答题的方式。CDA Level II 考试分为两部分,90 分钟的客观题(单选 + 多选)上机答题,以及 120 分钟的案例操作(需自行携带安装好带有数据挖掘功能软件的电脑,如 SQL、PYTHON、SPSS MODELER、R、SAS、WEKA 等,案例数据统一提供 CSV 文件)。CDA Level III 考试则更为复杂,第一阶段为 150 分钟的客观题 + 主观题,闭卷上机答题;第二阶段为在 1 个月内完成项目案例(开卷),提交项目结果后,还需进行 60 分钟的线上答辩面试(只有第一阶段考试通过者,才有资格参与第二阶段面试) 。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06