京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在电商、零售、甚至内容付费业务中,你真的了解你的客户吗?
有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是大客户,现在却很久没买过……如果你能精准识别这些不同类型的客户,并采取针对性的运营策略,销售额是不是会提升很多?
今天,我们来聊聊一个简单但超好用的用户分层模型——RFM模型。抛开枯燥的理论,用接地气的方式,帮你真正掌握并用起来。
RFM是Recency(最近一次消费)、Frequency(消费频率)、Monetary(消费金额)的缩写,它用来衡量客户的价值和忠诚度。
你有两个客户:
显然,小张的价值更高,更值得维护。而小李,可能已经处于流失边缘,需要挽回。
RFM模型就是用数据来量化这种“感觉”,让你能科学地判断哪些客户值得重点运营,哪些客户需要挽回。
要计算RFM,你至少需要三列数据:
假设你的数据长这样(今天是2024年4月1日):

R(Recency,最近消费天数)
R=分析日期−最近一次消费日期
例如,U001最近一次消费是3月15日,今天是4月1日,所以R = 17天。
F(Frequency,消费频率)
统计用户的总消费次数,比如U001有2次消费,U002只有1次消费。
M(Monetary,消费金额)
统计用户的总消费金额,比如U001的M=250+180=430元。
计算后的数据如下:

为了更好地分层,我们需要给R、F、M分别打分。最简单的方法是按照数据分位数进行分组,比如:
R评分(R值越小越好,说明用户更活跃)
F评分(F值越大越好,说明客户粘性更高)
M评分(M值越大越好,说明客户贡献更大)
计算后,每个用户的RFM得分如下:

根据RFM得分,我们可以把客户分成不同类型,并制定不同的营销策略:
举个例子:

RFM模型的核心价值,不只是简单地打个分、分个群,而是要让这些数据真正指导运营决策,提高业务增长。作为一个资深数据分析师,我的建议是:
RFM模型不是“算完就完”,关键在于行动。很多人计算完RFM得分后,就把它丢到PPT里汇报,然后就没有然后了。

RFM分析的价值,在于它能帮助你精准地找到值得维护的客户,并指导具体的营销策略。重要客户不只是“给点折扣”,而是要用长期运营的思维去维护,比如VIP专属权益、个性化推荐。

复购低但金额大的客户,可能对价格敏感度不高,可以尝试提供高端产品或会员服务,而不是一味打折。
快要流失的客户,“复购窗口”是有限的,如果不在30天内召回,可能后续投入再多也无效。

别死磕RFM数值,要结合业务场景解读。
如果你做的是高客单价B2B业务,一个客户一年买一次,但金额很大,F值低并不代表他价值低。如果你是做日用快消,客户每天买一次才算正常,F=2 可能就意味着流失风险。

对不同业务,RFM的评分标准可以动态调整,而不是固定的四分位。
RFM只是起点,别被局限。
想更进一步?可以加入用户行为数据,比如浏览、加购但未下单的行为,来做更细粒度的分析。结合LTV(客户生命周期价值)计算,看看哪些RFM高分用户实际上为你创造了长期利润。用AI或机器学习做聚类分析(如K-means),比手动设定RFM区间更精准。
数据分析最重要的不是方法,而是如何落地执行。 RFM只是一个工具,真正能让它产生价值的,是你如何用它去优化运营策略。真正的增长,不是靠算分,而是靠行动。
对于数据分析来说,业务分析是最重要的,所以是CDA数据分析师一级把业务分析模型作为重要考点。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27