京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条。

很多数据分析师有点慌,担心数据分析师是不是要失业了,上答案:数据分析师的春天来了!

通过使用AI工具我们可以很便捷的做一些个数据清洗啊,比如说做excel的数据清洗,数据分割。过去需要通过编程,比如VBA来实现。这些操作真的很烦人,现在就很简单了。

作为一个老的数据分析师,曾经也是没日没夜的坐在电脑前写SQL、Python,这是非常郁闷的一件事情啊。其实数据分析并不应该是个编程的工具人,应该做一些更有创造性的工作,比如发现业务当中遇到的问题、做问题的归因分析、寻找解决问题的方法。过去大家认为数据分析师就是处理数据、写VBA、SQL和Python,那其实是是一个固化的认识。

下面是一个使用国内某大厂的智能体做的一份自动化分析报告的示例,只要我们把报告框架设定好,把提示词调整好,那报告就直接生成了。
视频:https://mp.weixin.qq.com/s/zssVzuh1AIXZJZC-FMuE5w
咱们看一下效果,这个工具虽然不算完美,但是可以极大的解放劳动力。













再强调一下,AI来了,数据分析岗位不会被替代,下面列出了企业员工在能力方面的6个层面,大家可以看看自己处于哪个层面上。如果所处的层面比较低,那就完全没必要焦虑了,因为路还很长,AI只会替代低级的操作类的工作内容,高层次的工作还是需要人来做。
也就是了解规则,至少保证工作不犯错。
可以想办法提高工作效率
可以制定能够产生更好效果的策略

对企业内部和竞品的单个产品和产品组合有深入的了解,制定全方位的客户解决方案。
可以分析市场的需求变化趋势,不断迭代产品和创新
可以深入洞察社会发展的规律,获得竞争先机。
作为数据分析师人才的培养机构,我们也经常思考如下问题:

基于企业对数据分析岗位人员的要求,CDA认证体系在去年做了全面的调整,目的就是提升认证数据分析师的能力层次,适应外部环境的变化。以下是CDA一级的内容框架。

以上框架形成了完备的数据分析内容、方法和流程。便于数据分析的能力提升。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。

CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12