京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
https://edu.cda.cn/goods/show/3845?targetId=6754&preview=0
“最近的销售数据,让运营经理头大了!”
小张是某电商平台的运营经理,最近发现一个不妙的趋势——销售额连续三个月下降,最新一个月环比下降了 15%!一开始以为只是短期波动,但翻看了去年的数据后,他意识到事情可能没那么简单。到底是市场大环境变差了,还是自家出了问题?小张决定使用趋势分析来摸清销售额变化的底细。
趋势分析,说白了就是“观察数据的走势,看它是涨是跌,再想办法解释背后的原因。”这就像是医生给病人看体检报告,血压、血糖这些数据是升是降,能反映出健康状况,销售数据也是一样的道理。
简单来说,趋势分析主要做以下几项工作:
第一步
画个趋势图,看看整体走势
小张先把过去一年的销售数据拉出来,绘制销售额趋势图:

从上面的趋势图可以看到:
销售额在 7 月达到高点,然后开始下滑。8月之后数据一直在下滑直到12月。小张确定,这不是短期波动,而是一个持续的下降趋势。
第二步
拆解核心指标,找到下降的真正原因
销售额可以拆解为以下三个核心指标:
销售额=访客数(UV)×转化率×客单价
分别来看这三个指标的变化趋势。

通过访客数(UV)趋势图可知:访客量稳定,问题不在流量
访客数(UV)在 7月之后虽然略有下降,但基本保持稳定,整体保持在6月的访客数附近,但销售额并没有保持在6月的销售额水平上下。这说明销售额下降并不是由于流量减少,更大可能是流量进来后没有转化为订单。
因此,我们需要进一步查看转化率的变化趋势。

转化率趋势:下降明显,
从转换率趋势图可以看出,转化率从7月的22%降低到了12月的13%,下降幅度达到9%。这说明,尽管访客数有所减少,但影响销售额的主要因素是转化率的大幅下降。
那么,是什么导致转化率下降?我们需要进一步分析转化率的细分维度,例如:
流量来源:是否某些渠道的转化率下降?
用户类型:新用户 vs. 老用户,谁的转化率下降更多?
第三步
进一步深挖,找出影响转化率的具体因素

流量来源分析结论:付费流量转化率下降
从图表可以看到:
自然流量转化率基本保持稳定,说明老用户或者主动搜索进来的用户行为没有太大变化。
付费流量转化率下降明显,这说明:付费流量的质量下降,可能是投放渠道的用户精准度变差;付费广告可能吸引了很多低意向用户,导致他们访问但没有购买。
**关键结论:销售额下降的部分原因是广告投放的流量质量变差,带来的用户不精准,导致转化率下降。

新老用户分析结论:新用户转化率下降明显
从图表可以看出:
老用户转化率基本保持稳定,说明老客户的购买习惯没有太大变化。
新用户转化率明显下降,说明:近期获取的新用户质量较低,他们进入网站但没有完成购买;新用户的引导或促销力度可能不足,导致他们流失。
关键结论:销售额下降的另一个重要原因是新用户的转化率下降,说明近期的营销策略可能未能有效吸引高质量用户,或用户进入后缺少足够的购买激励。
第四步
趋势预测,未来会发生什么?
接下来,小张预测了未来两个月的销售额,如果不采取任何措施,是否还会继续下降?
使用时间序列回归模型(ARIMA模型)预测未来两个的销售额数据分别为93.55万元和92.67万元,即如果不调整策略,销售额可能继续下降,意味着如果不采取优化措施,销售额还会继续下滑。

第五步
优化策略,如何改善销售?
根据上述情况,小张提出可以采取的优化措施:
**针对“付费流量质量下降” **
**针对“新用户转化率下降” **
**针对“整体转化率下降” **
综上,趋势分析可以帮助快速识别业务变化,找到问题根源,并做出精准预测。结合趋势图表,可以更直观地发现问题,而不是凭感觉猜测。通过合理的优化策略,可以改善销售趋势,避免损失继续扩大。
以上的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12