
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?”
“是不是广告投放的用户质量不高?还是我们的产品问题?”
在给华为的培训中提到了这个问题,一位资深的数据分析师立马抢答:“这里面肯定有很多变量的关系值得深挖。” 这时候,关系分析(Relationship Analysis) 就派上了用场。
关系分析,简单来说,就是找出变量之间的联系。进行数据分析时会发现,事情很少是孤立发生的——用户流失可能和他们的购买行为、客服体验、甚至是天气都有关系。但哪些因素是关键?哪些因素真的影响了用户决策? 关系分析就是搞清楚这些问题的“侦探工具”。
关系分析是数据分析中最基础也是最重要的环节之一,主要用于:
回到我们的业务案例:用户流失率上升,我们需要找出原因。
为了搞清楚问题,我们先来拆解它:
我们需要用到的数据包括:
拿到数据后,我们先做个简单的统计:
过去一个月流失的用户:10,000
这些用户中,70% 在最近3个月内没有复购
40% 的用户曾在客服端提交过投诉
60% 的用户使用过优惠券
这里已经可以看出一些苗头了——客服问题可能是影响流失的因素之一,而优惠券使用是否和流失有关,还需要进一步分析。
我们先计算各变量与“用户是否流失”之间的相关性(皮尔逊相关系数):
购买次数(-0.72):负相关,购买次数越多,流失率越低
订单金额(-0.65):负相关,高客单价用户流失可能性低
客服响应时间(+0.53):正相关,客服响应慢,用户流失可能性大
会员等级(卡方检验 p<0.05):显著相关,高级会员更可能留存
看起来,客服响应时间和购买次数是最关键的因素。
我们用逻辑回归模型来预测用户流失的概率:
绘制散点图能够更直观的展示流失率和客服响应时间之间的关系:
图中Y轴是流失概率,x轴是客服相应时间/小时。
观察发现,客服响应时间越长,用户的流失概率越高。这个发现和我们的相关分析、回归分析结果是一致的。
通过关系分析可以得出如下结论:
客服响应时间是影响用户流失的关键因素之一,企业应优化客服系统,提高响应速度。
高频购买的用户流失率更低,可以针对低频用户设计挽留策略,例如个性化推荐、精准营销。
高级会员流失率更低,可以通过引导用户升级会员,提高用户粘性。
优化建议:
缩短客服响应时间:改进客服机制,引入自动化客服,提高响应效率。
提升用户购买频次:通过营销策略(如折扣、积分系统)刺激用户复购。
加强会员制度:提供更多会员专属权益,引导普通用户升级。
综上,关系分析不仅是一个数据分析方法,更是一种业务洞察工具。通过找出变量之间的联系,能更精准地找到业务问题的根源,并制定有针对性的优化策略。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11