京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:CDA持证人 余治国
一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》,报告中说,从薪酬来看,女性的平均薪酬为8689元/月,与男性的9942元/月相差1253元,报告发布后,立马引起网友热议。


大部分民众对平均工资、平均年终奖、人均GDP是不买账的,为什么?这就是犯了统计上滥用平均值的错误。
问题:
对于偏态数据大多数样本达不到/或远超过平均值水平;
平均值没有代表意义;只看平均值会忽略波动。
原因:
平均值的信息量有限;不能告诉你分布形态和波动;
平均值容易被极端值拉偏;
不同性质的数据被放一起机械的被平均了(需要分层进行分析)。
应对策略:
明确平均值使用的前提条件;正确的应用平均值;
除了关注平均值外,还要搞清楚数据的分布形态;
结合其它指标一起分析(如中位数,极差,标准差等)

某产品寿命服从正态分布,平均值为10000小时,有50%的产品寿命会大于10000小时。

某产品寿命服从指数分布,平均值为10000小时,只有36.79%的产品寿命会大于10000小时。
例:已知某产品每个季度的不良率,求全年度平均不良率。

错误答案1:(1.25%+1.14%+1.15%+1.05)/4
错误答案2:(1.25%*1.14%*1.15%*1.05%)^1/4
正确答案1: (250+240+300+199)/(20000+21000+26000+19000)
正确答案2: (1.25%*20000+1.14%*21000+1.15%*2 6000+1.05%*19000)/ (20000+210000+26000+19000)
问题:
分析:
应对策略:


样本量较小时样本均值或比率波动较大

QE:你看,7号这天原材料不良率太高了,达到停线标准了!你必须把库存都退给供应商!
SQE:这几天使用的原材料都是同一供应商同一批次的,平均不良率为0.13%,质量没问题!
现象:
真实原因:

20世纪70年代,美国为减少红灯时汽车在路口等待造成的汽油浪费,决定评估是否允许红灯时右转。弗吉尼亚公路与运输局研究后报告声称,允许红灯右转后事故发生率没有显著增加(p>0.05)。若干年后研究发现,允许红灯右转后汽车撞毁的频率比以前提高了20%,行人被撞的频率比以前提高了60%。
场景:
问题:
原因:
有很多原因导致数据不服从正态分布;
数据不正态不等于过程不受控;
数据不正态不等于数据造假。
应对对策


相关不等于因果,但因果必相关;因果关系是相关关系的子集;相关关系可以为寻找因果关系提供指引和线索;采取改善措施要针对真正的原因来改善,而不是针对相关关系采取措施。

错误案例
刚出生的婴儿一个月可以长5cm;如果按这个速度预测,他30岁时可以长到多高?
某公司前年销量增长了10%;去年增长了10%,今年也增长了10%;你能用这个增长速度去预测它20年后的销量吗?

随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。

CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01