
阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了?
案例一:本硕都是 985,所学的专业也是当红专业计算机。毕业即加入阿里当程序员,工作13年,曾经的阿里的 P9,后来离职去了一家创业公司做CTO(首席技术官)。不料市场行情不好,公司倒闭。现在年龄超过40岁,面试了9家单位,Offer为零,大半年都没找到合适的工作……
案例二:工作13年,阿里P8,37岁,87年出生的老员工,突然被通知裁员,无数个加班到凌晨的付出,最后只换来一个裁员大礼包,真的很难接受……
要知道,在阿里的职级体系中,P8、P9已经是相当高的级别了,这些人员往往意味着核心骨干或中层管理者。这一裁员决定表明,即便是高级人才,在公司战略调整和成本控制的大背景下,也难以幸免。
都说职场如战场,再深厚的感情也抵不过残酷的商业现实。近年来,互联网行业的裁员潮此起彼伏。从BAT到新兴独角兽,裁员似乎已经成为行业常态。以上的两个阿里员工的经历,只是这场大潮中的一个缩影。
裁员大潮之下,普通人如何自救?
阿里P8、P9这种级别的大佬被裁后找工作尚且不容易,普通人尤其是大龄打工人失业后想找到一份薪资待遇都不错的工作显然就更难了!
保持学习的心态非常有必要。有时候,一个人在某个行业中能够获得高额的薪水,并不全因为自身能力,更有可能是赶上了时代的大潮。
有潮起自然有潮落,35 岁一到,或者行业出现下行,很多人就会发现自己立刻就进入了“毕业”阶段,切切实实感受到行业中的霜刀风剑的寒意,一不小心就要要作为人才向社会输送了。
每个时代都会有风口行业,如果你能始终保持学习的状态,那么就大概率能明白最新的行业风口在哪里。跟风不一定是一件好事,但是抓准风口行业和机会,一定会让你比其他人拥有更多的选择机会和空间。
下一个行业风口在哪里?
阿里创始人马云在接受CNBC(美国消费者新闻与商业频道)采访时说到:整个世界将变成数据,我认为这还是只是数据时代的开始。
2023世界经济论坛发布的《未来就业报告》,预测了未来五年内增长最快的十大岗位,其中就包括了人工智能与机器学习专业人员、数据分析师和科学家和数字化转型人员。
数据正在变得越来越常见,小到我们每个人的社交网络、消费信息、运动轨迹……,大到企业的销售、运营数据,产品的生产数据,交通网络数据……
数据分析人才热度也是高居不下,一方面企业的数据量在大规模的增长,对于数据分析的需求与日俱增;另一方面,相比起其他的技术职位,数据分析师的候选者要少得多。
在这个数据驱动的时代,数据分析已经成为了企业决策的核心。它不仅帮助我们从海量数据中提取有价值的信息,还能预测市场趋势,优化业务流程,几乎是每个职场人必修的课程。
普通人转行“数据分析师”
数据分析转行门槛
转行数据分析并没有你想象中的那么难。和其他行业不一样,数据分析是一个交叉复合的方向,更需要有多重工作背景的人。
数据分析本质上只是一种技能,必须同时擅长其他专业领域知识(比如你是财务、产品、人力,把自己专业领域知识+数据分析技能结合起来),才能够走得长远。
所谓数据分析,是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据分析行业细分领域很多,选择面较广,不管是对于人力、运营、产品等来说,都是一个不错的选择。
数据分析师的发展路径
数据分析师的发展路径统共来说可以分为偏业务和偏技术两个方面的发展路径:
偏业务:一般在业务部门的比较多,备选的岗位有数据运营、用户运营、用户增长、以及营销策划等岗位,和代码接触时间较少,做PPT和报表的时间较多一些,基本上日常的工作就是操作线程的数据产品或者在图表基础上写sql。
发展需求:关注目标、洞察需求、设计方案、推动落地、实现增长、赢得业绩
偏技术:偏技术的岗位有类似于数据运营、用户运营、用户增长以及营销策略等岗位上,这些岗位和数据的关联性很高,同时也是十分具有发展前途的几个岗位。
发展需求:数据埋点、数据采集、ETL、数仓开发、算法开发、BI开发
数据分析能力需求
数据分析的本质就是要把分析结果应用到业务层面,最终实现业务的良好增长。
一般而言,可以按照“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目,这时我们需要掌握一些主要细分知识点。
数据分析基本流程
具体而言,数据分析师需要两个层面的技能,一个是技术层面的技能,另一个是非技术性的软技能。
技术能力
1.统计学基础:理解基本的统计概念如均值、中位数、众数、方差、标准差等,以及假设检验、回归分析、方差分析等统计方法。
2.编程能力:掌握至少一种编程语言,如Python、R或SQL,用于数据处理、清洗、分析和可视化。Python因其强大的库(如Pandas、NumPy、SciPy、Matplotlib、Seaborn等)而广受欢迎。
3.数据可视化:能够将复杂的数据转化为易于理解的图表和图形,帮助非技术背景的人也能理解数据背后的故事。
4.数据库知识:了解数据库的基本概念,能够使用SQL语言进行数据的查询和管理,熟悉关系型数据库(如MySQL、PostgreSQL)或非关系型数据库(如MongoDB)的使用。
5.大数据工具:了解并使用大数据处理框架和技术,如Hadoop、Spark等,以及云平台(如AWS、Azure)上的大数据服务。
6.机器学习基础:理解机器学习算法的基本原理,能够应用常见的机器学习模型(如线性回归、逻辑回归、决策树、随机森林、神经网络等)解决实际问题。
非技术能力
1.问题解决能力:能够从复杂的数据中发现问题、定义问题,并设计有效的解决方案。
2.批判性思维:对数据和分析结果保持怀疑态度,能够评估数据的准确性和可靠性,识别潜在的偏差和错误。
3.沟通能力:能够将复杂的数据分析结果以简洁明了的方式呈现给非技术背景的听众,包括管理层、业务人员等。
4.团队合作精神:在跨部门项目中与不同背景的团队成员有效合作,共同推动项目进展。
5.持续学习能力:数据分析领域发展迅速,需要不断学习新的技术和方法,保持对新知识的敏感度。
6.项目管理能力:在大型项目中,能够管理项目进度、资源和风险,确保项目按时按质完成。
在当今这个被数据洪流席卷的时代,数据已成为企业运营与决策的核心驱动力。当前,数据分析已成为衡量职业竞争力的重要标尺。它不再是数据分析师的专属技能,而是每一位职场人士都应掌握的通用语言,是提升工作效率、优化决策质量、推动业务增长的关键所在。
如果你也想进一步提升职场竞争力,抓住时代红利,那么强烈建议考一个CDA数据分析师。备考CDA数据分析师的过程就是个自我提升的过程,CDA小程序资料非常丰富,包括题库、考纲等,利用好了自学就能考过。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26