京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA持证人Louis
我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之前其实一直很迷茫,因为自己其实也不知道到底适不适合旅游行业,而且上学的时候没有认真搞过什么旅游的实习,基本毕业就是凉凉的节奏。

所幸毕业前,在和朋友的一次偶然交谈中,得知了数据分析这个职业,发现自己似乎比较感兴趣,当时也没有其他路可以选,就决定孤注一掷,all in 数据分析。没想到就是这个选择,后来改变了我的人生方向!在此也感谢一下那位朋友,人生确实是在于你能否做对几个关键的选择。
5年前刚毕业准备步入职场的时候,我投了很多大厂的简历,但大部分都石沉大海,没有任何回音。说实话,尽管结果在意料之中,但依然还是很失落。
其实原因大体能猜到,一是学历,二是专业,对于大厂数据分析师岗来说,计算机或统计学专业,重点本科及以上学历可以说是标配。对于普通的本科(非211/985)学历,可以说基本学历关都过不了。
好在我是个做事比较有毅力的人,哪怕受挫也并没有选择放弃。尽管学的并不是统计学和计算机学相关专业,但我一直在自学数据分析。简单来说,我主要做了以下几方面的准备:
数据分析的定义很多,结合我个人对于数据分析的理解,数据分析师是指不同行业中,专门从业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。数据分析分为两种:

更接近于数据挖掘工程师、算法工程师、大数据工程师这种概念,一般来说是需要比较好的数据结构知识和算法知识,对于非计算机专业的同学,转型会有一定难度。其实一开始我考虑的是这种分析师,但在后面刷了几百道leetcode题之后,决定放弃这条路(太难了)。
也是市面上岗位最多的数据分析师,这种分析师的门槛会相对比较低一点,但做不好的话,很有可能就变成报表分析师,提数分析师。不过毕竟门槛还是比较低的,对于想转型的同学,业务型数据分析师会更加友好一些。所以,我也选择了这个方向。

业务型的数据分析,说白了其实就是哪个业务部门有需求就往哪跑,专门帮业务解决具体业务问题的。这个方向其实并不一定要求你技术有多强,关键的是要懂市场、有数据敏感度、会分析。

比如:
既然岗位要求是要会分析,那么平常多看一些市场调研报告和行业数据分析报告,没事的时候自己也可以练手尝试去写下调研分析报告,这会在无形中使自己的分析能力得到极大提升。
简历对于求职来说是最重要的敲门砖。一般来说,简历内容结构主要由6个方面构成:基本信息、学历信息、技能、项目、工作经历和其他附加信息等;
学历、技能、项目、工作经历可以调换顺序,主要原则为亮眼经历放在前展示,相对薄弱地方放在后面。对于学历不是特别亮眼的,建议平常一定要多一些相关领域的实习或者争取一些项目经验。

另外,专业也很重要。像我这种并不是科班出身的,就一定要在建立中罗列一些学过的和数据分析相关的专业课程,例如统计学、python、计量、多变量分析、研究方法等课程;
这些课程可以是你自学的,也可以是你通过培训机构学习的,总之要有相关的学习经历或项目经历。
对数据分析师来说,主要职责是发现问题,分析问题,解决问题,所以数据分析师基本上可以理解为是靠脑子吃饭,那么也就是说思路决定出路。

数据分析师岗位的核心技能主要有数据工具、统计学、分析方法论、机器学习模型能力、通用能力、擅长领域等。
数据工具,主要包含三个方面:数据查询(sql)、数据处理与分析(excel、python、r、spss等)、数据可视化(tableau、powerbi、python包等可视化工具);

统计学基础,常用统计分析方法例如假设检验、方差分析、回归分析等;

分析方法论,这部分可以写一些常用的业务分析模型及常用分析方法论,例如ab实验分析、转化漏斗分析、rfm分析、同期群分析、生命周期分析,异动分析,因果推断的常用分析方法如双重差分、psm等;

通用能力,可以写一些数据分析所需软技能,例如结构化思维、沟通协调能力、推动能力、项目管理能力、业务理解等;

机器学习模型,建议罗列一些自己熟悉的模型,体现自己的机器学习方面能力,例如线性回归、逻辑回归、决策树、随机森林、聚类等;

擅长领域,如果对某一领域非常擅长将是很大的加分项,例如擅长搭建用户增长体系、擅长用户画像、擅长战略分析、擅长会员体系搭建、擅长补贴策略、擅长社区内容分析、擅长分析报告等,写清所擅长领域会非常便于公司快速的定位简历关键词,定向寻找人才;

在面试的时候,一定要将数据分析与岗位需求以及自己擅长的领域相结合,这样不仅能更好地展示自己,也更能在业务中发现问题,解决问题。
数据分析岗对于数据分析思维、业务分析模型的考察十分重视。这两年随着数据化转型,学数据分析的人越来越多,做点调研就会发现CDA数据分析师是含金量最高的,知识体系非常的完整,考过了CDA数据分析师一级,几乎就具备了基本的数据分析能力,考过了二级就具备了进大厂的能力,很多大厂实战问题在备考二级的时候都会学到,想提升数据思维能力和数据分析技能的,可以扫码CDA认证小程序,获取更多资料。

数据分析面试的问题,大体可以划分为专业知识问题和非专业知识问题。一般来说,面试准备大概可以分为四个步骤:
步骤一:定型自我介绍。自我介绍是面试绕不开的环节,需要在面试前,将自我介绍完整定型,多多练习,并在过程中不断优化,遵循:抓重点+有逻辑+总分总原则。
步骤二:简历问题模拟作答。面试环节,很大部分时间,是围绕你的简历内容开展的,因此对于简历中提到的内容,尤其是项目经历,需要烂熟于心,并且经得起推敲。
步骤三:开放性问题整理。开放性问题更多偏向于数据分析方法论,以及延伸出来的一些内容,例如:针对某些问题场景要如何进行分析?当被问到一个未知的问题时,需要快速在你的知识库里搜索相似的解决方法,并有逻辑性的给予输出,这个时候,第一步的知识体系梳理,就显得尤为重要了。
步骤四:代码练习。大多数企业面试,会考核候选人的代码能力,SQL必考、Python选考,在面试之前,将常用代码内容多加练习,问题一般不大。
同时,准备面试的时候最好完整梳理至少两个过往所做的项目,项目选取尽量选择完整性高、参与度深、成果好的。建议可以重点梳理以下几个点:
1、项目背景、规模、涉及人数部门、项目角色(owner、参与者) 2、行动计划、抓手 3、过程中的效果衡量指标 4、项目中遇到的困难及如何解决 5、项目后续是否有迭代优化,基于什么考虑 6、项目做完后具体带来的价值,解决了什么问题(尽量量化指标) 7、项目结束后的反思,方法论沉淀 8、数据分析能力在这个项目中的体现
另外,在面试之前,尤其是对自己感兴趣的企业,可以先提前了解企业基本情况,多获取行业信息,建立基本认知。
对于目标岗位的要求,一定要认真看,如果是业务型的,可以针对性了解下相关业务是如何做的。这些准备,可以让自己提前对目标企业和自己原工作的差异有认知,避免面试时被杀个措手不及。
扫码CDA认证小程序,获取更多资料

随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程,CDA小程序资料非常丰富,包括题库、考纲等,利用好了自学就能考过。

CDA考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27