京公网安备 11010802034615号
经营许可证编号:京B2-20210330
制作漂亮的数据分析图表不仅需要一定的数据分析技巧,还需要了解如何直观、易于理解地呈现数据。选择合适的图表类型、讲究色彩搭配、优化图表布局、保持数据的准确性,这样才能大大提升图表的美观性和实用性。让我们深入探讨如何通过这些步骤实现这一目标。
无数次,我看到过复杂的数据被简单的图表表现得淋漓尽致,仿佛解开了信息背后的密码。选择正确的图表类型是展现数据故事的首要步骤。
折线图:这就像为你的数据画出一条时间变迁的“生命线”。适用于展示数据随时间变化的趋势,让人一目了然地看到增长或下降。
饼图:想让观众明白各部分的比例,饼图就是一个绝佳工具。但要注意,只在分类不多的时候使用,否则容易让人晕头转向。
然而,选择合适的图表只是第一步,颜色的使用同样重要。
选择一种清晰且对比度明显的配色方案,能让图表更加美观。如若颜色选得不当,读者可能会被五光十色所分散注意力,而无法专注于数据本身。
我记得某次在会议上看到一个深色背景的柱状图,结果由于颜色过于艳丽,反而看不清数据之间的差异。因此,避免使用过多鲜艳的颜色,渐变色则可以增加层次感,使数据展示更立体。
Excel不仅是一款强大的数据处理工具,其图表功能也十分出色,可以帮助我们制作双层数据分析图。以下是一些具体技巧:
通过添加辅助列将同比和环比增长率扩大,这样可以在最终图表中突出显示增长情况。插入柱形图后,继续添加数据,设置环比增长率,并调整坐标轴范围,以便更好地结合柱形图和折线图,形成双层效果。
将同比和环比添加到次标轴上,增长率用折线图表示。通过调整坐标轴范围,我们可以更清楚地展示数据增长趋势。
美化图表中的细节,通过调整标签位置和视觉效果,使其符合视觉美学,创建一个既吸引人又实用的图表。
“棒棒糖”图像是一种有趣的数据展现形式,能展示实际数据与计划数据之间的对比。
首先,使用IF函数判断数据是否大于1,将本月数分为已完成和未完成的两部分。这样可以清晰地反映实际与计划之间的差异。
确保计划柱的宽度和颜色与未完成部分区分开来,再添加数据标签,使其清晰易懂。在这里,点的标记变大,折线隐藏,使得图表更简洁和美观。
图表的终极目标是传达信息,而不是复杂的艺术品。因此,避免过多元素和装饰保持图表的简洁性尤为重要,让观众能够迅速理解其中的关键信息。
正确的比例和缩放可以正确传达数据的信息,而不至于误导观众。因此,确保图表的坐标轴和刻度清晰标示。添加明确的标题和标签更能提升图表的解释性。
条件格式化是Excel的一个强大功能,可以增强图表的可读性,使得数据更加突出。通过这项功能,你可以突出显示特定数据点、趋势和异常值,从而更快地帮助观众理解数据。
首先,选择数据范围,设置条件格式,比如字体颜色、填充颜色或图标集,以便轻松突出显示符合条件的数据。创建自定义规则来满足特定的分析需求,比如超出某个范围的值以不同颜色显示。
通过这些方法,可以大大提高数据分析的效率和效果。
颜色的合理使用在数据传递中有巨大作用。
使用互补色或相似色能够建立视觉上的对比和和谐,例如蓝橙搭配在柱状图中能有效区分不同数据类别,确保高对比度以便于观众区分数据点。
渐变色在图表中带来深度感,尤其在热力图中能表现数据的高低。通过高对比度颜色突出重要数据点或趋势线,其他数据线则用柔和的颜色。
使用色盲朋友也能理解的配色方案,如蓝色和橙色组合,避免红绿对比。沿用一致的颜色方案在整篇报告中更有助于观众的理解。
除Excel外,还有许多在线工具也可以帮助你制作专业的数据分析图表:
这些工具各有特点,根据需求和技术背景选择最适合的工具来制作图表。
制作出色的数据分析图表并没有想象中那么复杂,选择合适的图表类型,合理使用颜色和工具,如Excel,遵循设计原则,不仅能帮助你更好地呈现数据,还能增强图表的视觉吸引力。这样的图表不仅是数据的容器,更是一个生动的故事讲述者。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12