
在处理多分类问题时,无序多分类Logistic回归是一种强大的统计方法,特别适用于具有多个无序类别的情况。通过以下Python示例,我们将演示如何有效实现这一方法,以及评估模型性能。
无序多分类Logistic回归广泛应用于数据科学和机器学习领域,为处理复杂分类问题提供了便利。让我们一起通过以下步骤深入了解其应用:
首先,让我们导入所需的库,包括numpy、pandas、matplotlib以及sklearn中的LogisticRegression。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report, cohen_kappa_score
我们将使用经典的鸢尾花数据集(Iris Dataset)作为示例。该数据集包含150个样本,每个样本具有4个特征,并分属于3个类别之一。
from sklearn.datasets import load_iris
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
将数据集划分为训练集和测试集,常用比例为80%训练,20%测试。
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
使用LogisticRegression类训练模型,设置multi_class='auto'以自动选择适当的多分类策略。
# 创建Logistic回归模型
model = LogisticRegression(penalty='l2', solver='liblinear', multi_class='auto', random_state=42)
# 训练模型
model.fit(X_train, y_train)
利用训练好的模型对测试集进行预测。
# 对测试集进行预测
y_pred = model.predict(X_test)
通过混淆矩阵、分类报告和Kappa系数来评估模型性能。
# 生成混淆矩阵
cm = confusion_matrix(y_test, y_pred)
print("混淆矩阵:")
print(cm)
# 生成分类报告
cr = classification_report(y_test, y_pred)
print("分类报告:")
print(cr)
# 计算Kappa系数
kappa = cohen_kappa_score(y_test, y_pred)
print("Kappa系数:", kappa)
通过绘制混淆矩阵,我们可以更直观地了解模型的预测结果。
# 绘制混淆矩阵
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('混淆矩阵')
plt.colorbar()
tick_marks = np.arange(len(iris.target_names))
plt.xticks(tick_marks, iris.target_names, rotation=45)
plt.yticks(tick_marks, iris.target_names)
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], '.2f'),
horizontalalignment="center",
color="white" if cm[i, j] > cm.max() / 2 else "black")
plt.ylabel('真实标签')
plt.xlabel('预测标签')
plt.tight_layout()
plt.show()
通过上述步骤,我们成功实现了无序多分类Logistic回
归模型的训练、预测和评估过程。接下来,我们将展示完整的Python代码实现。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report, cohen_kappa_score
from sklearn.datasets import load_iris
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建Logistic回归模型
model = LogisticRegression(penalty='l2', solver='liblinear', multi_class='auto', random_state=42)
# 训练模型
model.fit(X_train, y_train)
# 对测试集进行预测
y_pred = model.predict(X_test)
# 生成混淆矩阵
cm = confusion_matrix(y_test, y_pred)
print("混淆矩阵:")
print(cm)
# 生成分类报告
cr = classification_report(y_test, y_pred)
print("分类报告:")
print(cr)
# 计算Kappa系数
kappa = cohen_kappa_score(y_test, y_pred)
print("Kappa系数:", kappa)
# 绘制混淆矩阵
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('Confusion Matrix')
plt.colorbar()
tick_marks = np.arange(len(iris.target_names))
plt.xticks(tick_marks, iris.target_names, rotation=45)
plt.yticks(tick_marks, iris.target_names)
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], '.2f'),
horizontalalignment="center",
color="white" if cm[i, j] > cm.max() / 2 else "black")
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.tight_layout()
plt.show()
通过以上代码,我们实现了无序多分类Logistic回归模型的训练、预测和评估,并通过混淆矩阵和其他指标来评估模型性能。您可以根据自己的数据集和需求进行相应地修改和调整。希望这对您有所帮助!如果需要进一步的帮助或解释,请随时告诉我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28