
在解释机器学习模型预测结果时,特征重要性评估至关重要。其中,SHAP(SHapley Additive exPlanations)作为一种基于博弈论的方法,通过计算每个特征对模型输出的贡献,帮助我们深入理解模型的预测准确性以及特征之间的相互作用。
选择基准值: 在计算SHAP值之前,首先需选定一个基准值作为参考点,通常可以是所有特征的平均值或某个随机样本。
计算特征子集的预测差异: 针对每个特征,计算包含该特征和不包含该特征时的预测输出差异。这些差异反映了特征对模型预测的影响程度。
加权平均: 将所有可能的特征子集的预测差异进行加权平均,从而得到每个特征的Shapley值。这个过程确保每个特征的重要性都得到公平分配。
可视化和解释: 利用SHAP库提供的工具,如summary_plot和force_plot,可以直观展示SHAP值,帮助我们更好地理解每个特征对模型预测的具体影响。
全局和局部解释: SHAP值不仅在全局层面评估特征的重要性,还能就特定样本的预测结果提供局部解释。
Python库: SHAP提供了一个便捷的Python库,可用于计算和可视化SHAP值。例如,使用shap.TreeExplainer能快速计算树模型的SHAP值。
通过结合博弈论原理和数学优化方法,SHAP值为机器学习模型提供了强大的解释能力,成为理解和改进模型的重要工具。
以CDA认证为例,专业数据分析人士应当熟练掌握SHAP值计算特征重要性的方法。在我的工作中,我曾遇到一项数据挖掘项目,利用SHAP值发现了一些决策树模型中被低估的关键特征,从而成功提升了预测准确率。这在这个项目中,我们首先使用SHAP值对模型的特征重要性进行了全局解释,发现了一些重要特征。然后,我们利用SHAP值对个别样本的预测结果进行局部解释,帮助我们理解模型在每个样本上的预测过程。
通过SHAP值的解释,我们发现了一些之前被忽视的关键特征,这些特征对于模型的预测具有重要影响。基于这些发现,我们对模型进行了调优和改进,加入了新的特征工程方法,并优化了模型参数。
最终,经过调整和改进后的模型在验证集上取得了更高的预测准确率和稳定性,证明了SHAP值在特征重要性评估和模型解释方面的价值。
总的来说,掌握SHAP值计算特征重要性的方法不仅可以提升数据分析专业水平,还能够帮助在实际项目中更好地理解和改进机器学习模型。因此,我认为熟练应用SHAP值是数据分析领域必备的技能之一。您有什么其他问题或者需要进一步了解的内容吗?我可以继续为您提供帮助。
《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25