京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这里我们创建一个DataFrame命名为df:
import numpy as np
import pandas as pd
d = np.array([[81, 28, 24, 25, 96],
[ 8, 35, 56, 98, 39],
[13, 39, 55, 36, 3],
[70, 54, 69, 48, 12],
[63, 80, 97, 25, 70]])
df = pd.DataFrame(data = d,
columns=list('abcde'))
df
| a | b | c | d | e | |
|---|---|---|---|---|---|
| 0 | 81 | 28 | 24 | 25 | 96 |
| 1 | 8 | 35 | 56 | 98 | 39 |
| 2 | 13 | 39 | 55 | 36 | 3 |
| 3 | 70 | 54 | 69 | 48 | 12 |
| 4 | 63 | 80 | 97 | 25 | 70 |
查看前n行
df.head(2)
| a | b | c | d | e | |
|---|---|---|---|---|---|
| 0 | 81 | 28 | 24 | 25 | 96 |
| 1 | 8 | 35 | 56 | 98 | 39 |
查看后n行
df.tail(2)
| a | b | c | d | e | |
|---|---|---|---|---|---|
| 3 | 70 | 54 | 69 | 48 | 12 |
| 4 | 63 | 80 | 97 | 25 | 70 |
查看随机N行
df.sample(2)
| a | b | c | d | e | |
|---|---|---|---|---|---|
| 1 | 8 | 35 | 56 | 98 | 39 |
| 3 | 70 | 54 | 69 | 48 | 12 |
单列选取,我们有3种方式可以实现
第一种,直接在[]里面写上要筛选的列名
df['a']
0 81
1 8
2 13
3 70
4 63
Name: a, dtype: int64
第二种,在.iloc[]里的,前面写上要筛选的行索引,在,后面写上要筛选的列索引。其中:代表所有,0:3代表从索引0到2
df.iloc[0:3,0]
0 81
1 8
2 13
Name: a, dtype: int64
第三种,直接.后面写上列名
df.a
0 81
1 8
2 13
3 70
4 63
Name: a, dtype: int64
同样的,选择多列常见的也有3种方式:
第一种,直接在[]里面写上要筛选的列名组成的列表['a','c','d']
df[['a','c','d']]
| a | c | d | |
|---|---|---|---|
| 0 | 81 | 24 | 25 |
| 1 | 8 | 56 | 98 |
| 2 | 13 | 55 | 36 |
| 3 | 70 | 69 | 48 |
| 4 | 63 | 97 | 25 |
第二种,在.iloc[]里面行索引位置写:选取所有行,列索引位置写上要筛选的列索引组成的列表[0,2,3]
df.iloc[:,[0,2,3]]
| a | c | d | |
|---|---|---|---|
| 0 | 81 | 24 | 25 |
| 1 | 8 | 56 | 98 |
| 2 | 13 | 55 | 36 |
| 3 | 70 | 69 | 48 |
| 4 | 63 | 97 | 25 |
第三种,在.loc[]里面的行索引位置写:来选取所有行,在列索引位置写上要筛选的列索引组成的列表['a','c','d']
df.loc[:,['a','c','d']]
| a | c | d | |
|---|---|---|---|
| 0 | 81 | 24 | 25 |
| 1 | 8 | 56 | 98 |
| 2 | 13 | 55 | 36 |
| 3 | 70 | 69 | 48 |
| 4 | 63 | 97 | 25 |
直接选取第一行
df[0:1]
| a | b | c | d | e | |
|---|---|---|---|---|---|
| 0 | 81 | 28 | 24 | 25 | 96 |
用loc选取第一行
df.loc[0:0]
| a | b | c | d | e | |
|---|---|---|---|---|---|
| 0 | 81 | 28 | 24 | 25 | 96 |
选取任意多行
df.iloc[[1,3],]
| a | b | c | d | e | |
|---|---|---|---|---|---|
| 1 | 8 | 35 | 56 | 98 | 39 |
| 3 | 70 | 54 | 69 | 48 | 12 |
选取连续多行
df.iloc[1:4,:]
| a | b | c | d | e | |
|---|---|---|---|---|---|
| 1 | 8 | 35 | 56 | 98 | 39 |
| 2 | 13 | 39 | 55 | 36 | 3 |
| 3 | 70 | 54 | 69 | 48 | 12 |
指定行列值
df.iat[2,2] # 根据行列索引
55
df.at[2,'c'] # 根据行列名称
55
指定行列区域
df.iloc[[2,3],[1,4]]
| b | e | |
|---|---|---|
| 2 | 39 | 3 |
| 3 | 54 | 12 |
以上是关于如何查看一个DataFrame里的数据,包括用[]、iloc、iat等方式选取数据,接下来我们来看如何用条件表达式来筛选数据:
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22