
Apache Hadoop是存储和处理大数据的开源软件框架 Hadoop项目
Hadoop能够在上千台机器组成的集群上运行大规模集群的可靠性,不能仅仅靠硬件来保证,因为节点的失败、网络的失败等状况不可避免,为了能够在大规模集群上顺利运行,Hadoop的所有模块,其设计原则基于这样的基本假设,即**硬件的失败在所难免,每个节点都没有那么可靠,可能发生节点失败状况,软件框架应该能够自动检测和处理这些失败情况。 Hadoop通过软件,在大规模集群上提供高度的可用性(High Availability)
Hive是Hadoop平台上的数据仓库,用于对数据进行离线分析。它提供了一种类 似于SQL的查询语言HQL (Hive Query Language)。Hive将SQL转化为 MapReduce作业(Job)在Hadoop上执行。
HBase是Google Big Table在Hadoop平台上的开源实现。它是一个针对结构化数 据处理的、面向列分组(Column Family)的、可伸缩的、高度可靠的、高性能的分 布式数据库。一般用于数据服务(Data Serving)应用场合。
Pig实现了数据查询脚本语言Pig Latin。用Pig Latin脚本语言编写的应用程序,翻 译为MapReduce作业,在Hadoop上运行
Flume是一个可扩展的、高度可靠的、高可用的分布式海量日志收集系统,一般 用于把众多服务器上的大量日志,聚合到某一个数据中心。Flume提供对日志数 据进行简单处理的能力,比如过滤、格式转换等。同时,Flume可以将日志写往 各种目标(本地文件、分布式文件系统)。
Mahout是Hadoop平台上的机器学习软件包,它的主要目标是实现高度可扩展的 机器学习算法,以便帮助开发人员利用大数据进行机器学习模型训练。Mahout现 在已经包含聚类、分类、推荐引擎(协同过滤)、频繁集挖掘等经典数据挖掘和机 器学习算法。
Oozie是一个工作流调度器(Scheduler)。Oozie协调运行的作业,属于一次性非 循环的作业,比如MapReduce作业、Pig脚本、Hive查询、Sqoop数据导入/导出 作业等。Oozie基于时间、和数据可用性进行作业调度,根据作业间的依赖关 系,协调作业的运行
Zookeeper是模仿Google公司的Chubby系统的开源实现,Chubby是一个分布式 的锁(Lock)服务
原理:
读文件
在大数据处理的领域中,Hadoop 可谓是一位 “重量级选手”。然而,就像任何技术一样,Hadoop 1.0 也有它的不足之处。
Hadoop 1.0 存在着明显的单点故障问题。这就好比一个团队中,如果关键人物出了问题,整个团队的运作可能就会陷入混乱。在 Hadoop 1.0 中,一旦 NameNode 这个关键节点出现故障,整个系统就可能面临崩溃的风险。
而且,它的资源管理方式也不够灵活。就好像分配房间,如果只有一种固定的分配方式,很难满足各种不同的需求。
不过,技术总是在不断进步的。Hadoop 2.0(YARN)的出现,给我们带来了新的希望。
YARN 的原理就像是一个更聪明的 “管家”。它把资源管理和任务调度分开了。ResourceManager 就像是大管家,负责整体资源的分配和监控。而 ApplicationMaster 则像是每个任务的小管家,专门负责自己任务的资源申请和调度。
这种分离的方式,让系统的扩展性大大增强。就好比原来的房子不够住了,现在可以很方便地加盖新的房间,而不会影响原来的居住者。
同时,容错性也得到了提高。即使某个 “小管家” 出了问题,也不会让整个 “家” 乱了套。
资源利用率也因为这种更精细的管理而得到了提升,不再有资源浪费或者分配不均的情况。
YARN(Yet Another Resource Negotiator)
总的来说,Hadoop 2.0(YARN)的出现,解决了 Hadoop 1.0 的很多痛点,让大数据处理变得更加高效、可靠和灵活。相信在未来,它还会不断进化,为我们处理大数据带来更多的便利和惊喜!
ResourceManager的主要功能,是资源的调度工作。所以它能够轻松地 管理更大规模的集群系统,适应了数据量增长对数据中心的扩展性提出的挑战。
ResourceManager是一个单纯的资源管理器,它根据资源 预留要求、公平性、服务水平协议(Service Level Agreement, SLA)等标准,优化 整个集群的资源,使之得到很好的利用。
在Hadoop1.0平台上开发的 MapReduce应用程序,无需修 改,直接在YARN上运行。
当数据存储到HDFS以后,用户希望能够对数据以不同的 方式进行处理。除了MapReduce应用程序(主要对数据进行批处理),YARN支持 更多的编程模型,包括图数据的处理、迭代式计算模型、实时流数据处理、交互 式查询等。一般来讲,机器学习算法需要在数据集上,经过多次迭代,才能获得 最终的计算结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25