
Apache Hadoop是存储和处理大数据的开源软件框架 Hadoop项目
Hadoop能够在上千台机器组成的集群上运行大规模集群的可靠性,不能仅仅靠硬件来保证,因为节点的失败、网络的失败等状况不可避免,为了能够在大规模集群上顺利运行,Hadoop的所有模块,其设计原则基于这样的基本假设,即**硬件的失败在所难免,每个节点都没有那么可靠,可能发生节点失败状况,软件框架应该能够自动检测和处理这些失败情况。 Hadoop通过软件,在大规模集群上提供高度的可用性(High Availability)
Hive是Hadoop平台上的数据仓库,用于对数据进行离线分析。它提供了一种类 似于SQL的查询语言HQL (Hive Query Language)。Hive将SQL转化为 MapReduce作业(Job)在Hadoop上执行。
HBase是Google Big Table在Hadoop平台上的开源实现。它是一个针对结构化数 据处理的、面向列分组(Column Family)的、可伸缩的、高度可靠的、高性能的分 布式数据库。一般用于数据服务(Data Serving)应用场合。
Pig实现了数据查询脚本语言Pig Latin。用Pig Latin脚本语言编写的应用程序,翻 译为MapReduce作业,在Hadoop上运行
Flume是一个可扩展的、高度可靠的、高可用的分布式海量日志收集系统,一般 用于把众多服务器上的大量日志,聚合到某一个数据中心。Flume提供对日志数 据进行简单处理的能力,比如过滤、格式转换等。同时,Flume可以将日志写往 各种目标(本地文件、分布式文件系统)。
Mahout是Hadoop平台上的机器学习软件包,它的主要目标是实现高度可扩展的 机器学习算法,以便帮助开发人员利用大数据进行机器学习模型训练。Mahout现 在已经包含聚类、分类、推荐引擎(协同过滤)、频繁集挖掘等经典数据挖掘和机 器学习算法。
Oozie是一个工作流调度器(Scheduler)。Oozie协调运行的作业,属于一次性非 循环的作业,比如MapReduce作业、Pig脚本、Hive查询、Sqoop数据导入/导出 作业等。Oozie基于时间、和数据可用性进行作业调度,根据作业间的依赖关 系,协调作业的运行
Zookeeper是模仿Google公司的Chubby系统的开源实现,Chubby是一个分布式 的锁(Lock)服务
原理:
读文件
在大数据处理的领域中,Hadoop 可谓是一位 “重量级选手”。然而,就像任何技术一样,Hadoop 1.0 也有它的不足之处。
Hadoop 1.0 存在着明显的单点故障问题。这就好比一个团队中,如果关键人物出了问题,整个团队的运作可能就会陷入混乱。在 Hadoop 1.0 中,一旦 NameNode 这个关键节点出现故障,整个系统就可能面临崩溃的风险。
而且,它的资源管理方式也不够灵活。就好像分配房间,如果只有一种固定的分配方式,很难满足各种不同的需求。
不过,技术总是在不断进步的。Hadoop 2.0(YARN)的出现,给我们带来了新的希望。
YARN 的原理就像是一个更聪明的 “管家”。它把资源管理和任务调度分开了。ResourceManager 就像是大管家,负责整体资源的分配和监控。而 ApplicationMaster 则像是每个任务的小管家,专门负责自己任务的资源申请和调度。
这种分离的方式,让系统的扩展性大大增强。就好比原来的房子不够住了,现在可以很方便地加盖新的房间,而不会影响原来的居住者。
同时,容错性也得到了提高。即使某个 “小管家” 出了问题,也不会让整个 “家” 乱了套。
资源利用率也因为这种更精细的管理而得到了提升,不再有资源浪费或者分配不均的情况。
YARN(Yet Another Resource Negotiator)
总的来说,Hadoop 2.0(YARN)的出现,解决了 Hadoop 1.0 的很多痛点,让大数据处理变得更加高效、可靠和灵活。相信在未来,它还会不断进化,为我们处理大数据带来更多的便利和惊喜!
ResourceManager的主要功能,是资源的调度工作。所以它能够轻松地 管理更大规模的集群系统,适应了数据量增长对数据中心的扩展性提出的挑战。
ResourceManager是一个单纯的资源管理器,它根据资源 预留要求、公平性、服务水平协议(Service Level Agreement, SLA)等标准,优化 整个集群的资源,使之得到很好的利用。
在Hadoop1.0平台上开发的 MapReduce应用程序,无需修 改,直接在YARN上运行。
当数据存储到HDFS以后,用户希望能够对数据以不同的 方式进行处理。除了MapReduce应用程序(主要对数据进行批处理),YARN支持 更多的编程模型,包括图数据的处理、迭代式计算模型、实时流数据处理、交互 式查询等。一般来讲,机器学习算法需要在数据集上,经过多次迭代,才能获得 最终的计算结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09