
启用HDFS文件系统之前,需要对其进行格式化;格式化只需做一次
在192.168.31.130上执行如下命令
cd /opt/linuxsir/hadoop/bin
./hdfs namenode -format
rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/logs/*.*
cd /opt/linuxsir/hadoop/sbin
./start-all.sh
\如果要停止,请执行如下命令
cd /opt/linuxsir/hadoop/sbin
./stop-all.sh
clear
cd /opt/linuxsir/hadoop/sbin
./start-dfs.sh
./start-yarn.sh
\如果要停止,请执行如下命令,即分开停止HDFS和YARN
cd /opt/linuxsir/hadoop/sbin
./stop-yarn.sh
./stop-dfs.sh
现在,可以在三个节点上,查看进程,验证Hadoop是否成功启动
[root@hd-master bin]# jps
6262 NameNode
28630 Jps
6455 SecondaryNameNode
6618 ResourceManager
[root@hd-master bin]# ssh root@192.168.31.132 jps
3431 NodeManager
20697 Jps
3311 DataNode
[root@hd-master bin]# ssh root@192.168.31.133 jps
3313 DataNode
3431 NodeManager
20295 Jps
到目前为止,启动HDFS和YARN以后,各个节点的进程,如下图所示
层级 | hd-master | hd-slave1 | hd-slave2 |
---|---|---|---|
hdfs层 | NameNode、Secondary、NameNode | DataNode | DataNode |
Yarn层 | ResourceManager | NodeManager | NodeManager |
hardware各个节点 | 192.168.31.131 | 192.168.31.132 | 192.168.31.133 |
在hd-master上运行如下命令,报告HDFS的基本信息
cd /opt/linuxsir/hadoop
./bin/hdfs dfsadmin -report
[root@hd-master bin]# cd /opt/linuxsir/hadoop
[root@hd-master hadoop]# ./bin/hdfs dfsadmin -report
Configured Capacity: 63116517376 (58.78 GB)
Present Capacity: 52430880768 (48.83 GB)
DFS Remaining: 52430462976 (48.83 GB)
DFS Used: 417792 (408 KB)
DFS Used%: 0.00%
Under replicated blocks: 2
Blocks with corrupt replicas: 0
Missing blocks: 0
Missing blocks (with replication factor 1): 0
-------------------------------------------------
Live datanodes (2):
Name: 192.168.31.133:50010 (hd-slave2)
Hostname: hd-slave2
Decommission Status : Normal
Configured Capacity: 31558258688 (29.39 GB)
DFS Used: 208896 (204 KB)
Non DFS Used: 5349883904 (4.98 GB)
DFS Remaining: 26208165888 (24.41 GB)
DFS Used%: 0.00%
DFS Remaining%: 83.05%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Oct 11 01:29:14 PDT 2024
Name: 192.168.31.132:50010 (hd-slave1)
Hostname: hd-slave1
Decommission Status : Normal
Configured Capacity: 31558258688 (29.39 GB)
DFS Used: 208896 (204 KB)
Non DFS Used: 5335752704 (4.97 GB)
DFS Remaining: 26222297088 (24.42 GB)
DFS Used%: 0.00%
DFS Remaining%: 83.09%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Oct 11 01:29:14 PDT 2024
如果Hadoop启动出问题,可以通过查看日志来寻找原因。每次启动Hadoop,应该首先清空三个节点的logs目录,方便寻找错误。
当启动出错,可以到相应节点上,查看日志文件。哪个节点启动出错,就看哪个节点的日志文件。由于有无密码ssh登录,可以通过主节点登录到其它节点,去查看所有节点的日志文件。
日志文件分别在hd-master、hd-slave1、hd-slave2的/opt/linuxsir/hadoop/logs目录下。
启动Hadoop之前,删除log文件
如果启动出问题,log文件里就是最新的出错信息
rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/logs/*.*
若干web管理界面,列表如下
访问NameNode管理页面,监控文件系统。 http://192.168.31.131:50070/
访问ResourceManager(整个Cluster)管理页面,监控集群状况。 http://192.168.31.131:9099/ 这个端口缺省是8088,由于端口冲突,改成9099, 参考yarn-site.xml
MapReduce JobHistory Server的管理页面,查看MapReduce作业提交历史;需要事先启动JobHistory Server。 http://192.168.31.131:19888/
cd /opt/linuxsir/hadoop/bin
hdfs dfsadmin -safemode leave
\ 用户可以通过dfsadmin -safemode value 来操作安全模式,参数value的说明如下:
\ enter - 进入安全模式
\ leave - 强制NameNode离开安全模式
\ get - 返回安全模式是否开启的信息
\ wait - 等待,一直到安全模式结束
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -rm -r /input \ 递归式删除目录
./hdfs dfs -mkdir /input \ 创建目录
./hdfs dfs -chmod a+rwx /input \ 授权
./hdfs dfs -mkdir /output \ 创建目录
./hdfs dfs -copyFromLocal /opt/linuxsir/test.txt /input \ 拷贝文件到HDFS
\ 或者./hdfs dfs -put /opt/linuxsir/test.txt /input
./hdfs dfs -cat /input/test.txt | head \ 显示文件的头几行
注意,需要事先启动HDFS和YARN
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -cat /input/test.txt
./hadoop jar /opt/linuxsir/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /input/test.txt /output
./hdfs dfs -ls /output
./hdfs dfs -cat /output/part-r-00000
为了运行wordcount,必须保证hdfs分布式文件系统的/output不存在。如果存在可以把它删除,命令如下
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -ls /output
./hdfs dfs -rm /output/*
./hdfs dfs -rmdir /output
在hd-master节点上,配置History Server
1、在.../etc/hadoop/mapred-site.xml中配置以下内容
<property>
<name>mapreduce.jobhistory.address</name>
<value>hd-master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hd-master:19888</value>
</property>
2、把hd-master的新配置分发到所有节点即hd-slave1和hd-slave2。
clear
scp /opt/linuxsir/hadoop/etc/hadoop/mapred-site.xml hd-slave1:/opt/linuxsir/hadoop/etc/hadoop
scp /opt/linuxsir/hadoop/etc/hadoop/mapred-site.xml hd-slave2:/opt/linuxsir/hadoop/etc/hadoop
3、启动服务,在hd-master这台服务器上执行以下语句。 注意,需要事先启动HDFS和YARN
cd /opt/linuxsir/hadoop/sbin
mr-jobhistory-daemon.sh start historyserver
clear
jps
ssh root@192.168.31.132 jps
ssh root@192.168.31.133 jps
访问MapReduce JobHistory Server
http://192.168.31.131:19888/
为了顺利运行该实例,需要编辑/opt/linuxsir/hadoop/etc/hadoop/hdfs-site.xml配置文件,添加如下配置
<!-- for windows access linux HDFS -->
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property>
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术》一书中指出:AI思维, ...
2025-07-17数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10