京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师的薪资水平在不同行业和公司中存在显著差异。根据搜索结果,以下是一些薪资水平通常较高的行业和公司类型:
金融行业:金融行业对数据分析师的需求很大,因为他们需要通过分析大量的交易数据、市场趋势和风险评估来优化投资策略和提高决策质量。金融行业的数据分析师薪资通常较高。
科技行业:科技公司通常拥有大量用户数据,需要数据分析师来分析用户行为、优化产品和提升用户体验。科技行业的数据分析师薪资也相对较高,尤其是在硅谷等高科技产业集中的地区。
互联网/电子商务:互联网和电子商务公司依赖数据分析来优化用户体验、提高转化率和增加销售额。这些公司通常提供较高的薪资水平,尤其是在北京、上海、深圳等大城市。
计算机软件:软件开发公司需要数据分析师来改进产品功能、用户体验和市场定位。这些公司通常愿意为数据分析师支付较高的薪资。
新能源:随着新能源行业的发展,对数据分析的需求也在增长,尤其是在优化能源效率和降低成本方面。
专业服务(咨询、人力资源、财会):咨询公司和专业服务公司通常需要数据分析师来提供基于数据的洞察和建议,这些服务通常收费较高,因此数据分析师的薪资也相对较高。
大型科技公司和知名互联网公司:例如腾讯、阿里巴巴、百度、字节跳动等,这些公司通常提供非常有竞争力的薪资和福利。
根据BOSS直聘的数据,数据分析师的平均月薪在中国为7,581元人民币,但这个数字可能会随着不同城市和行业而有所变化。例如,在北京,数据分析师的工资可以达到26.4K,而在上海和深圳,数据分析师的薪资也相对较高。在互联网/电子商务行业中,数据分析师的平均工资为23.9K,而在计算机软件行业中,平均工资也接近这一水平。
总的来说,数据分析师在金融、科技、互联网/电子商务、计算机软件和专业服务等行业中的薪资水平通常较高。这些行业的公司往往更依赖数据分析来驱动业务决策,因此愿意为数据分析师支付更高的薪资。同时,大城市和知名公司也是数据分析师获得高薪资的重要场所。
数据分析师在不同城市的平均薪资水平有何差异?
数据分析师在不同城市的薪资水平存在显著差异,主要受地区经济状况、行业需求、生活成本和专业技能等因素的影响。以下是一些主要城市的数据分析师薪资水平概况:
北京:作为中国的政治、文化和教育中心,北京对数据分析师的需求量大,薪资水平较高。数据分析师的平均月薪在北京可以达到25,400元左右,其中20,000元到30,000元薪资范围的占比最高 。
上海:上海是中国的经济中心之一,数据分析师的平均月薪在上海大约为20,000元到30,000元之间,其中36.6%的岗位提供这一薪资水平 。
深圳:深圳是中国的高科技和制造业中心,数据分析师在深圳的平均月薪中位数大约在15,000元左右,位居全国首位 。
广州:广州作为南中国的重要经济中心,数据分析师的平均月薪在广州大约为20,000元到30,000元之间,其中28.3%的岗位提供这一薪资水平 。
杭州:杭州是中国的互联网和电子商务中心之一,数据分析师在杭州的平均月薪中位数大约在12,000元左右,其中38.1%的岗位提供这一薪资水平 。
成都、武汉、南京、厦门:这些新一线城市的数据分析师起薪大约在7,000元左右,与一线城市相比,薪资水平较低,但生活成本也相对较低 。
青岛:青岛的数据分析师起薪约为7,000元左右,随着工作年限增长,薪资会逐步上升。1-3年经验的数据分析师薪酬平均8,000元,3-5年在12,000元左右 。
全国平均水平:数据分析师在全国的平均月薪为7,581元,其中大多数人的收入集中在5,000元到20,000元每月 。
需要注意的是,这些数据仅供参考,实际薪资水平可能会因公司规模、行业特性、个人能力等因素而有所不同。此外,随着数据分析技能的进一步发展和市场需求的增加,数据分析师的薪资水平普遍呈现上升趋势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27