
01 为什么要学这门课?
在当今数字化、信息化的时代背景下,数据扮演着越来越重要的角色。随着互联网和移动通信的快速发展,我们每天都产生大量的数据,其中包含了许多隐藏的商机和洞察力。
通信运营商经常面临一个问题,如何选定商圈才能最大化收益?这里就要用到数据挖掘算法,来进行处理,具体来说,使用某通信运营商提供的接口解析用户的定位数据以及对应属性,并对基站进行分群。通过比较不同商圈的分群结果,选择合适的区域进行后续的营销活动。
02 如何学这门课?
第一步,理解K均值聚类算法及其在项目中的应用。需要掌握相似度度量、算法逻辑和算法评估等方面的知识。
第二步,应该着重学习与项目相关的技术和操作。首先是数据可视化,需要学会使用适当的工具将数据以图形方式展示出来,以便更好地理解和分析数据。其次是数据清洗,需要了解如何处理数据中的缺失值、异常值和重复值,确保数据质量。此外,还应该学习相关性分析和维度归约技术,以减少数据的维度并提高模型的效果。
还需要学习K均值算法的调优策略,以进一步改进模型的性能。这包括选择合适的聚类数目、初始化方法和迭代停止条件等方面的知识。
通过这个案例,将获得以下收获:理解K均值聚类算法的逻辑,包括相似度度量、算法逻辑和算法评估等方面的知识。还将掌握应用聚类算法时涉及到的数据可视化、数据清洗、相关性分析和维度归约等操作。此外,还将学习K均值算法的调优策略以及在商业分析中的解释。
03 这门课谁适合学?
数据科学爱好者:通过学习K均值聚类算法,深入了解数据聚类的原理和应用,并在未来的数据分析项目中运用这些知识。
商业分析师:K均值聚类算法在客户画像、产品分群和精准营销等领域广泛应用,可以掌握如何利用聚类算法进行商业数据分析和决策。
数据分析师:学习K均值聚类算法,掌握数据可视化、数据清洗、相关性分析和维度归约等操作,进一步提高分析的准确性和效果。
IT专业人员:通过学习K均值聚类算法和项目中所涉及的数据清洗、调优流程,将这些技能应用到其他领域,如异常客户监测和个性化推荐等。
04 这门课学什么?这是一门商业数据挖掘案例课。一共1个章节,预计一周内的时间学完。
部分案例截图:
在当今竞争激烈的市场环境中,了解客户需求并制定有效的策略对于企业的成功至关重要。
从实际案例出发,利用一个通信运营商提供的接口,解析用户的定位数据和属性信息,并对基站进行分群,以选择适合的区域展开精准营销活动。深入了解K均值聚类算法的算法逻辑、相似度度量和评估方法等核心知识。
通过完整的案例学习,掌握应用聚类算法时所涉及的数据可视化、数据清洗、相关性分析和维度归约等操作技巧,还将了解K均值算法的调优策略和在商业分析中的解释。这些技能将提升在数据处理和分析领域的能力,并为在职场上获得更多机会铺平道路。
不要错过这个机会,购买我们的课程,与我们一起探索K均值聚类算法的奥秘,学习应用于实际场景的技巧,成为数据驱动的专家!立即行动,开启您的学习之旅吧!扫描二维码或者点击原文链接即可报名!
报名入口:https://edu.cda.cn/goods/show/958
查看更多课程:https://edu.cda.cn/course/explore/project_1
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10