
在机器学习中,数据集划分是一项重要的任务,它将可用的数据分为训练集、验证集和测试集,以支持模型的开发、调优和评估。合理的数据集划分方法可以提高模型的泛化能力和性能。以下是几种常见的数据集划分方法:
简单随机划分: 这是最基本的数据集划分方法之一。它通过随机地将数据样本分配给不同的集合来创建训练集、验证集和测试集。通常,训练集占总数据量的70-80%,验证集和测试集各占10-15%。这种方法简单易行,但可能会导致划分不均衡,特别是在数据集较小时。
分层随机划分: 分层随机划分考虑到了类别分布的平衡性,尤其适用于分类问题。它确保每个类别在训练集、验证集和测试集中的比例相近。这样可以避免某些类别在训练过程中得到较少的表示,从而影响模型的性能。
时间序列划分: 对于时间序列数据,如股票价格、气象数据等,随机划分可能不合适,因为时间上的先后关系对模型的性能有重要影响。常见的时间序列划分方法是按照时间顺序将数据集划分为训练集、验证集和测试集。通常,训练集包含较早的数据,验证集包含中间的数据用于模型选择,而测试集包含最新的数据用于最终评估。
K折交叉验证: K折交叉验证是一种常用的模型评估方法。它将数据集划分为K个互不重叠的子集,称为折。其中K-1个折用作训练集,剩余的1个折用作验证集。通过多次重复这个过程,每个折都充当一次验证集,可以更全面地评估模型的性能。最后,将K次评估的结果取平均值得到最终结果。
留一法: 留一法是K折交叉验证的特例,其中K等于数据集的样本数量。在每一轮中,只有一个样本被用作验证集,其余样本作为训练集。由于需要迭代多次,留一法计算成本较高,通常适用于数据集较小的情况。
无论使用何种划分方法,数据集的划分应该遵循以下原则:
数据集划分是机器学习中关键的步骤之一。不同的划分方法适用于不同类型的数据和问题。合理地进行数据集划分可以帮助我们开发出更具泛化能力和稳定性的机器学习模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11