京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据挖掘领域中,有许多常见的分类算法被广泛应用于数据分析、模式发现和预测等任务。以下是一些常见的数据挖掘分类算法:
决策树(Decision Trees):决策树是一种基于树状结构的分类算法,可以通过对输入数据进行一系列的划分来建立一个预测模型。决策树易于理解和解释,并且能够处理具有离散和连续特征的数据。
朴素贝叶斯(Naive Bayes):朴素贝叶斯是一种基于贝叶斯定理和特征条件独立假设的概率分类算法。它假设每个特征与其他特征之间相互独立,并使用贝叶斯推断来计算后验概率,从而进行分类。
逻辑回归(Logistic Regression):逻辑回归是一种广义线性模型,用于处理二分类问题。它使用逻辑函数来建立输入特征与输出概率之间的关系,可以用于预测新实例的类别概率。
支持向量机(Support Vector Machines,SVM):支持向量机是一种基于统计学习理论的二分类算法。它通过找到一个最优的超平面将不同类别的数据样本分开,同时最大化支持向量与超平面之间的距离。
K近邻算法(K-Nearest Neighbors,KNN):K近邻算法是一种基于实例的学习方法,根据输入实例在特征空间中的邻居进行分类。它使用训练集中的最近邻居来预测新实例的类别。
随机森林(Random Forests):随机森林是一种集成学习方法,结合多个决策树来进行分类。它通过随机选取特征子集和数据样本子集来建立多个决策树,并通过投票或平均预测结果来进行最终的分类。
梯度提升机(Gradient Boosting Machines,GBM):梯度提升机也是一种集成学习方法,通过迭代地训练多个弱学习器并对它们进行加权来提升性能。它通过最小化损失函数的梯度来逐步改进模型的预测能力。
神经网络(Neural Networks):神经网络是一种模拟人脑神经元网络的机器学习模型,可以处理复杂的非线性关系。它由多个连接的神经元层组成,并使用反向传播算法来训练和调整权重,以实现分类任务。
这只是数据挖掘中一些常见的分类算法,还有其他更多的算法如聚类算法、关联规则挖掘等。选择适当的算法取决于数据的性质和特定任务的要求。对于不同类型的问题,可能需要尝试不同的算法或者结合多种算法的优势进行集成学习,以达到更好的分类效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12