京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据清洗是指对采集的数据进行初步处理,使其符合分析要求和标准,从而提高数据质量和可信度的过程。数据清洗流程包括以下六个步骤:
数据收集 数据收集是数据清洗的第一步,这个步骤是获取数据的初始状态,可以是从数据库、API、爬虫等多种途径获得数据。在这一步骤中需要注意的是,要根据需求选择适当的数据源,并确保数据的完整性和准确性。
数据预处理 数据预处理是指对收集到的原始数据进行格式化、规范化、去重、去除噪声和异常值等操作。在这个步骤中,需要使用各种技术和算法,完成数据去重、修剪、替换、填充、归一化、缺失值处理等操作,以确保数据的质量和正确性。
数据转换 数据转换是指将原始数据转换为可分析的数据格式,通常采用结构化数据格式,如CSV、JSON或XML等。在这个步骤中,需要对数据进行字段定义、类型转换、编码转换等操作,以便于后续的数据分析和挖掘。
数据集成 数据集成是指将多个数据源的数据集成为一个数据集。在这个步骤中,需要对数据来源进行判断和选择,进行数据抽取、清洗、转换和加载等操作。此外,在数据集成中还需要注意数据重复和冲突的问题。
数据验证 数据验证是指对清洗后的数据进行验证,以确保数据的质量和完整性。在这个步骤中,需要使用各种技术和算法,例如统计分析、逻辑验证、规则检查、数据比较和可视化等方法,以发现数据异常和错误。
数据存储 数据存储是将清洗、转换和验证后的数据存储到数据库或文件中的过程。在这个步骤中,需要选择适当的存储格式和方式,并确保数据可读、可修改和可维护。此外,还需要考虑数据安全和备份等问题。
总体来说,数据清洗流程是一个多环节的过程,需要使用不同的技术和工具完成各项操作。数据清洗的目的是提高数据的质量和可信度,使数据更加适合于后续的数据分析和挖掘。因此,对数据清洗的每个步骤都需要认真对待,以确保数据的准确性和可靠性。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12