京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘是一种从大规模数据中发现隐藏在其中的知识、信息和关联等,并且可以将这些信息应用于不同领域的技术。常见的数据挖掘算法包括分类、聚类、关联规则、异常检测等。本文将介绍这些算法的主要概念和应用场景。
分类是一种监督式学习算法,其目标是根据给出的输入数据集,对每个数据点进行准确地分类。分类算法通常使用训练数据集来构建一个模型,并利用该模型对新样本进行预测。
常见的分类算法包括决策树、K近邻、朴素贝叶斯、支持向量机等。其中,决策树算法通过不断划分数据集,建立一棵树形结构来实现分类;K近邻算法通过计算与新样本最接近的k个已知样本的距离,来确定其分类;朴素贝叶斯算法基于贝叶斯理论,利用已知的先验概率和条件概率,计算得到每个类别的后验概率,从而实现分类;支持向量机通过找到样本空间中的最优超平面,将不同类别的样本点分开。
分类算法可以应用于许多领域,例如金融行业中的信用评估、医疗领域中的疾病诊断等。
聚类是一种无监督学习算法,其目的是将数据集中的样本分成不同的组,使得同一组内的样本相似性最大,而不同组间的相似性尽可能小。聚类算法通常通过计算样本之间的距离或相似度来实现。
常见的聚类算法包括K均值、层次聚类、DBSCAN等。其中,K均值算法根据每个样本与聚类中心的距离来确定其所属的聚类,然后更新聚类中心,不断迭代直到收敛;层次聚类算法通过合并相似的样本,构建一个树形结构,最终把它们划分为不同的类别;DBSCAN算法则将密度较高的样本视为同一类,而将低密度区域视为噪声。
聚类算法在市场细分、社交网络分析等领域中得到了广泛应用。
关联规则挖掘旨在寻找数据集中项之间的依赖关系和频繁出现的组合。这种算法通常被用来挖掘超市销售数据中的关联规则,如“买了尿布的人也会买啤酒”。
常见的关联规则算法包括Apriori、FP-growth等。其中,Apriori算法通过不断剪枝来寻找频繁项集,然后利用这些频繁项集来生成关联规则;FP-growth算法则通过建立一棵FP树来实现频繁项集的挖掘。
异常检测是一种无监督学习算法,其目标是从数据中识别那些与其他数据点非常不同的点。这些异常点可能
是数据录入错误、设备故障或者是真实世界中的罕见事件。
常见的异常检测算法包括基于统计的方法、基于聚类的方法、基于密度的方法和基于机器学习的方法等。其中,基于统计的方法通常使用概率模型来识别异常点;基于聚类的方法则将异常点看作孤立的簇;基于密度的方法将高密度区域视为正常点,低密度区域视为异常点;而基于机器学习的方法则使用训练样本构建一个分类模型,并利用该模型对新样本进行判断。
异常检测算法可以应用于金融欺诈检测、网络安全、医疗领域等。
数据挖掘算法涵盖了多种技术和方法,可以帮助我们从大规模数据中发现有价值的信息和知识。分类、聚类、关联规则和异常检测算法是其中最常用的算法,它们都有各自的特点和适用场景。在选择算法时,需要考虑数据集的大小、数据类型、应用领域和预期目标等因素,以便选择最合适的算法来实现数据挖掘的目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27