京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据清洗是指将原始数据经过处理、筛选和转换等操作,以便让数据能够适合于分析、挖掘、建模等应用场景的一系列技术。数据清洗在数据科学领域中非常重要,因为数据质量对于后续的分析结果有着至关重要的影响。本文将介绍数据清洗常用的技术。
数据去重是指将数据集中重复的记录删除,以保证数据的唯一性。重复数据可能会导致分析结果出现偏差,故需要进行去重操作。数据去重可以通过使用Pandas库中的drop_duplicates()函数实现。
缺失值是指数据集中某些字段缺少数值或信息的情况。缺失值可能会导致分析结果不准确,需要进行处理。处理方法包括删除缺失值、用平均数、众数、中位数等统计量填充缺失值,也可以使用插值法来填充缺失值。
异常值是指数据集中与其他数据极其不同的值。异常值可能会对分析结果产生负面影响。我们需要找到并处理这些异常值。可以使用箱线图和离群点检测算法(例如Z-score离群点检测、IQR离群点检测)来找到异常值,并对其进行处理。
数据类型转换是指将一种数据类型转换为另一种数据类型。例如,将字符串类型转换为数值型、日期型等。在进行数据分析时,需要根据实际需求将数据转换为适当的类型。可以使用Pandas库中的astype()函数来实现数据类型转换。
数据归一化和标准化是一种重要的数据清洗技术,在特征工程中广泛应用。归一化是将数据缩放到[0,1]之间,标准化是将数据缩放为均值为0,方差为1。这些技术可以使不同的特征具有相同的权重,并且可以提高模型的准确性。
文本处理是指对自然语言文本进行分词、去停用词、词干提取、情感分析等操作。在处理文本数据时,需要根据实际需求选择相应的文本处理技术。常见的文本处理库包括nltk、spacy等。
数据集成是指将多个数据源中的数据合并到一个数据集中。在数据集成过程中,需要解决不同数据源之间的字段命名不同、数据格式不同、数据质量不同等问题。可以使用Pandas库中的merge()函数来实现数据集成。
数据采样是指从大型数据集中随机选择一部分样本进行分析,以减少计算时间和资源消耗。常见的数据采样方法包括随机采样、分层抽样、过采样、欠采样等。
数据转换是指将原始数据转化为能够被特定算法处理的格式。例如,将图像数据转换为向量、将文本数据转换为词向量等。数据转换通常是在特征工程中进行的,能够提高模型训练的准确性。
总结:
数据清洗是数据科学流程中非常重要的一步,它决定了后续的分析结果的准
确性和可靠性。常见的数据清洗技术包括数据去重、缺失值处理、异常值处理、数据类型转换、数据归一化和标准化、文本处理、数据集成、数据采样以及数据转换等。在实际工作中,需要根据具体业务需求选择相应的数据清洗技术。此外,在进行数据清洗时,还需要注意数据安全和隐私保护,避免泄露敏感信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12