京公网安备 11010802034615号
经营许可证编号:京B2-20210330
异常值(Outliers)是指在数据集中出现的与其他数据点明显不同的观测值,可能会对分析结果产生显著影响。因此,正确识别和删除异常值是数据分析的重要步骤之一。本文将介绍如何识别和删除异常值。
一、如何识别异常值
通过图形化展示数据来发现异常值是最常用的方法之一。例如散点图能够直观地显示每个数据点的位置,如果出现了极端的离群点或异常值,则可以很容易地被发现。箱线图也是一种常见的图表类型,能够明确地展示出数据的分布情况,具有较高的识别异常值的能力。
统计学方法主要是利用数据的分布情况和离散程度等特征来判断是否存在异常值。例如标准差法,即将数据按照正态分布进行标准化,并去除超出3倍标准差外的数据点。另外,Z-score分数法也属于常用的统计学方法,可以通过计算每个数据点相对于平均值的偏差来判断是否为异常值。
二、如何删除异常值
在识别到异常值后,我们需要决定如何处理这些异常值。以下是一些常用的方法:
最简单的方法就是直接删除异常值,但这可能会导致数据集的大小变小,从而影响分析结果的准确性。
将异常值替换成其他数值,例如均值、中位数、众数等。这种方法可以保证数据集的大小不变,但可能会对数据分布产生影响。
如果异常值出现在特定的分组中,我们可以考虑在该分组内进行特殊处理,例如使用不同的统计方法或回归模型来预测其值。
总之,识别和删除异常值是数据分析的必要步骤,需要根据具体情况选择合适的方法。同时,我们也需要注意不要过于依赖任何一种方法,应该结合多种方法进行判断,以确保得到可靠的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06