
Echarts 是一款由百度开源的数据可视化库,可用于生成各种类型的图表,包括地图。在 Echarts 中,可以通过地图下钻来实现地图的层级展示,同时也可以在地图上添加散点图等元素来丰富地图的内容。本文将介绍如何使用 Echarts 实现地图下钻和散点功能。
首先需要准备好 Echarts 的相关资源文件,包括 echarts.js 和 echarts-gl.js(用于支持 3D 效果)。这些文件可以从 Echarts 官网或 GitHub 上下载。同时,还需要准备好相应的地图数据,例如中国地图、各省市地图等。这些地图数据可以在 echarts-cities-js 或 echarts-countries-js 等仓库中找到并下载。
地图下钻是指从一个地图区域(例如国家)进入到该区域的下一级区域(例如省份),以此类推。在 Echarts 中,可以通过 series 属性中的 data 属性来配置地图数据,并通过 visualMap 属性来控制地图颜色。同时,还需在 series 中配置鼠标事件来实现地图下钻的效果。
以下是一个简单的地图下钻示例:
var chart = echarts.init(document.getElementById('main')); // 配置地图数据 var geoData = [
{ name: '北京', selected: false },
{ name: '上海', selected: false },
{ name: '天津', selected: false }, // 其他省市数据... ]; // 配置系列数据 var seriesData = [
{ name: '中国', type: 'map', mapType: 'china', selectedMode: 'single', roam: true, itemStyle: { normal: { label: { show: true } }, emphasis: { label: { show: true } },
}, data: geoData,
},
]; // 配置鼠标事件 chart.on('click', function (params) { var name = params.name; if (name === '北京') {
chart.setOption({ series: [
{ name: '北京', type: 'map', mapType: '北京', label: { show: true }, data: [],
},
],
});
} else if (name === '上海') {
chart.setOption({ series: [
{ name: '上海', type: 'map', mapType: '上海', label: { show: true }, data: [],
},
],
});
} else if (name === '天津') {
chart.setOption({ series: [
{ name: '天津', type: 'map', mapType: '天津', label: { show: true }, data: [],
},
],
});
} else { // 其他省市下钻... }
}); // 设置地图颜色 var visualMap = { type: 'piecewise', pieces: [
{ min: 10000, color: '#ff3333' },
{ min: 5000, max: 9999, color: '#ffa533' },
{ min: 1000, max: 4999, color: '#ffff33' },
{ min: 500, max: 999, color: '#33ff33' },
{ min: 1, max: 499, color: '#cccccc' },
{ value: 0, color: '#ffffff' },
], textStyle: { color: '#666666' },
}; // 渲染地图 chart.setOption({ tooltip: { show: true }, visualMap: visualMap, series: seriesData,
});
在上面的示例中,通过设置 series 类型为 'map',并指定 mapType 属性来显示中国地图。当用户点击某个省市时,会触发 chart 的 click 事件,在事件回调函数中根据不同的省市名称设置对应的地
图数据,实现地图下钻效果。同时,通过 visualMap 属性来设置地图颜色,并在 series 中配置 label 属性来显示省市名称。
除了地图下钻,还可以在地图上添加散点图等元素来丰富地图的内容。在 Echarts 中,可以通过 series 属性中的 type 属性来指定散点图类型,并通过 data 属性来配置散点数据。同时,还需在 geo 属性中配置地理坐标系相关信息,以便正确显示散点图位置。
以下是一个简单的地图散点示例:
var chart = echarts.init(document.getElementById('main')); // 配置地图数据 var geoData = [
{ name: '北京', selected: false },
{ name: '上海', selected: false },
{ name: '天津', selected: false }, // 其他省市数据... ]; // 配置系列数据 var seriesData = [
{ name: '散点', type: 'scatter', coordinateSystem: 'geo', data: [
{ name: '北京', value: [116.407394, 39.904211] },
{ name: '上海', value: [121.473662, 31.230372] },
{ name: '天津', value: [117.190182, 39.125596] }, // 其他城市数据... ], itemStyle: { normal: { color: '#ff8800',
},
},
},
]; // 配置地理坐标系 var geo = { map: 'china', roam: true, itemStyle: { normal: { label: { show: true } }, emphasis: { label: { show: true } },
},
}; // 设置地图颜色 var visualMap = { type: 'piecewise', pieces: [
{ min: 10000, color: '#ff3333' },
{ min: 5000, max: 9999, color: '#ffa533' },
{ min: 1000, max: 4999, color: '#ffff33' },
{ min: 500, max: 999, color: '#33ff33' },
{ min: 1, max: 499, color: '#cccccc' },
{ value: 0, color: '#ffffff' },
], textStyle: { color: '#666666' },
}; // 渲染地图 chart.setOption({ tooltip: { show: true }, visualMap: visualMap, geo: geo, series: seriesData,
});
在上面的示例中,通过设置 series 类型为 'scatter',并指定 coordinateSystem 为 'geo' 来实现散点图。通过在 data 中配置每个城市的经纬度来显示散点图位置,并在 itemStyle 中设置颜色。同时,在 geo 属性中设置地图相关信息,包括地图类型、漫游等。最后,通过 visualMap 属性来设置地图颜色。
以上就是使用 Echarts 实现地图下钻和散点功能的简单介绍。在实际开发中,可以根据具体需求来调整代码,并结合其他功能来实现更加丰富的地图效果。
你是否渴望进一步提升数据可视化的能力,让数据展示更加专业、高效呢?现在,有一门绝佳的课程能满足你的需求 ——Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)。
学习入口:https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
这门课程完全免费,且学习有效期长期有效。由 CDA 数据分析研究院的张彦存老师精心打造,他拥有丰富的实战经验,能将复杂知识通俗易懂地传授给你。课程深入讲解 matplotlib、seaborn、pyecharts 三大主流 Python 可视化工具,带你从基础绘图到高级定制,还涵盖多元图表类型和各类展示场景。无论是数据分析新手想要入门,还是有基础的从业者希望提升技能,亦或是对数据可视化感兴趣的爱好者,都能从这门课程中收获满满。点击课程链接,开启你的数据可视化进阶之旅,让数据可视化成为你职场晋升和探索数据世界的有力武器!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26