京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Echarts 是一款由百度开源的数据可视化库,可用于生成各种类型的图表,包括地图。在 Echarts 中,可以通过地图下钻来实现地图的层级展示,同时也可以在地图上添加散点图等元素来丰富地图的内容。本文将介绍如何使用 Echarts 实现地图下钻和散点功能。
首先需要准备好 Echarts 的相关资源文件,包括 echarts.js 和 echarts-gl.js(用于支持 3D 效果)。这些文件可以从 Echarts 官网或 GitHub 上下载。同时,还需要准备好相应的地图数据,例如中国地图、各省市地图等。这些地图数据可以在 echarts-cities-js 或 echarts-countries-js 等仓库中找到并下载。
地图下钻是指从一个地图区域(例如国家)进入到该区域的下一级区域(例如省份),以此类推。在 Echarts 中,可以通过 series 属性中的 data 属性来配置地图数据,并通过 visualMap 属性来控制地图颜色。同时,还需在 series 中配置鼠标事件来实现地图下钻的效果。
以下是一个简单的地图下钻示例:
var chart = echarts.init(document.getElementById('main')); // 配置地图数据 var geoData = [
{ name: '北京', selected: false },
{ name: '上海', selected: false },
{ name: '天津', selected: false }, // 其他省市数据... ]; // 配置系列数据 var seriesData = [
{ name: '中国', type: 'map', mapType: 'china', selectedMode: 'single', roam: true, itemStyle: { normal: { label: { show: true } }, emphasis: { label: { show: true } },
}, data: geoData,
},
]; // 配置鼠标事件 chart.on('click', function (params) { var name = params.name; if (name === '北京') {
chart.setOption({ series: [
{ name: '北京', type: 'map', mapType: '北京', label: { show: true }, data: [],
},
],
});
} else if (name === '上海') {
chart.setOption({ series: [
{ name: '上海', type: 'map', mapType: '上海', label: { show: true }, data: [],
},
],
});
} else if (name === '天津') {
chart.setOption({ series: [
{ name: '天津', type: 'map', mapType: '天津', label: { show: true }, data: [],
},
],
});
} else { // 其他省市下钻... }
}); // 设置地图颜色 var visualMap = { type: 'piecewise', pieces: [
{ min: 10000, color: '#ff3333' },
{ min: 5000, max: 9999, color: '#ffa533' },
{ min: 1000, max: 4999, color: '#ffff33' },
{ min: 500, max: 999, color: '#33ff33' },
{ min: 1, max: 499, color: '#cccccc' },
{ value: 0, color: '#ffffff' },
], textStyle: { color: '#666666' },
}; // 渲染地图 chart.setOption({ tooltip: { show: true }, visualMap: visualMap, series: seriesData,
});
在上面的示例中,通过设置 series 类型为 'map',并指定 mapType 属性来显示中国地图。当用户点击某个省市时,会触发 chart 的 click 事件,在事件回调函数中根据不同的省市名称设置对应的地
图数据,实现地图下钻效果。同时,通过 visualMap 属性来设置地图颜色,并在 series 中配置 label 属性来显示省市名称。
除了地图下钻,还可以在地图上添加散点图等元素来丰富地图的内容。在 Echarts 中,可以通过 series 属性中的 type 属性来指定散点图类型,并通过 data 属性来配置散点数据。同时,还需在 geo 属性中配置地理坐标系相关信息,以便正确显示散点图位置。
以下是一个简单的地图散点示例:
var chart = echarts.init(document.getElementById('main')); // 配置地图数据 var geoData = [
{ name: '北京', selected: false },
{ name: '上海', selected: false },
{ name: '天津', selected: false }, // 其他省市数据... ]; // 配置系列数据 var seriesData = [
{ name: '散点', type: 'scatter', coordinateSystem: 'geo', data: [
{ name: '北京', value: [116.407394, 39.904211] },
{ name: '上海', value: [121.473662, 31.230372] },
{ name: '天津', value: [117.190182, 39.125596] }, // 其他城市数据... ], itemStyle: { normal: { color: '#ff8800',
},
},
},
]; // 配置地理坐标系 var geo = { map: 'china', roam: true, itemStyle: { normal: { label: { show: true } }, emphasis: { label: { show: true } },
},
}; // 设置地图颜色 var visualMap = { type: 'piecewise', pieces: [
{ min: 10000, color: '#ff3333' },
{ min: 5000, max: 9999, color: '#ffa533' },
{ min: 1000, max: 4999, color: '#ffff33' },
{ min: 500, max: 999, color: '#33ff33' },
{ min: 1, max: 499, color: '#cccccc' },
{ value: 0, color: '#ffffff' },
], textStyle: { color: '#666666' },
}; // 渲染地图 chart.setOption({ tooltip: { show: true }, visualMap: visualMap, geo: geo, series: seriesData,
});
在上面的示例中,通过设置 series 类型为 'scatter',并指定 coordinateSystem 为 'geo' 来实现散点图。通过在 data 中配置每个城市的经纬度来显示散点图位置,并在 itemStyle 中设置颜色。同时,在 geo 属性中设置地图相关信息,包括地图类型、漫游等。最后,通过 visualMap 属性来设置地图颜色。
以上就是使用 Echarts 实现地图下钻和散点功能的简单介绍。在实际开发中,可以根据具体需求来调整代码,并结合其他功能来实现更加丰富的地图效果。
你是否渴望进一步提升数据可视化的能力,让数据展示更加专业、高效呢?现在,有一门绝佳的课程能满足你的需求 ——Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)。
学习入口:https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
这门课程完全免费,且学习有效期长期有效。由 CDA 数据分析研究院的张彦存老师精心打造,他拥有丰富的实战经验,能将复杂知识通俗易懂地传授给你。课程深入讲解 matplotlib、seaborn、pyecharts 三大主流 Python 可视化工具,带你从基础绘图到高级定制,还涵盖多元图表类型和各类展示场景。无论是数据分析新手想要入门,还是有基础的从业者希望提升技能,亦或是对数据可视化感兴趣的爱好者,都能从这门课程中收获满满。点击课程链接,开启你的数据可视化进阶之旅,让数据可视化成为你职场晋升和探索数据世界的有力武器!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27