京公网安备 11010802034615号
经营许可证编号:京B2-20210330
安装和使用Anaconda与Python 3的同时是完全可能的,因为Anaconda包含了自己的Python发行版以及众多常用数据科学工具和库。这篇文章将向你展示如何在不卸载现有Python 3的情况下顺利安装和使用Anaconda。
首先,您需要从Anaconda官网https://www.anaconda.com/products/individual下载适合您操作系统的版本。确保选择的版本与您的操作系统相对应,例如Windows或MacOS。
一旦您下载了正确的Anaconda版本,接下来就是安装。双击下载文件并按照指示进行安装即可。如果您想改变默认的安装路径,可以通过单击“浏览”按钮并选择新位置来实现。
请注意,安装完成后,Anaconda会成为您计算机上的一个新程序,您可以从启动菜单中找到它。
在安装完Anaconda之后,需要配置一些环境变量,以便在任何地方都能够访问它:
这将确保您可以从任何位置访问Anaconda中包含的Python发行版和其他工具。
安装完成后,您需要启动Jupyter Notebook,这是一个非常方便的交互式开发环境。要启动它,请按照以下步骤操作:
为了确保安装成功,您可以运行以下代码来测试:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
print("Hello, world!")
如果您能够看到“Hello, world!”消息而没有错误,则表明您已成功安装并准备好开始使用Anaconda。
通过以上步骤,您现在可以在不卸载您现有的Python 3版本的情况下安装和使用Anaconda。请注意,Anaconda为数据科学家和分析师提供了一个完整的工具箱,包括各种库、工具和实用程序。安装和使用Anaconda是成千上万的数据科学家和分析师的首选,因为它提供了一种快速,方便且高效的方法来管理Python包和工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12