
Pandas 是一种流行的数据分析工具,它提供了一系列的数据结构和函数,用于大规模数据处理。在 Pandas 中,我们经常需要对数据进行唯一值筛选和排序操作,以便更好地理解和分析数据。本篇文章将介绍如何使用 Pandas 获取列中的唯一值并进行排序。
要获取 Pandas 列中的唯一值,我们可以使用 unique()
函数。这个函数返回一个由所有不同值组成的数组,并按照它们出现的顺序排列。以下是使用 unique()
函数获取列中唯一值的示例代码:
import pandas as pd
# 创建数据框
data = {'name': ['Alice', 'Bob', 'Charlie', 'Alice'],
'age': [25, 30, 20, 25]}
df = pd.DataFrame(data)
# 获取 name 列中的唯一值
unique_names = df['name'].unique()
print(unique_names)
输出结果为:
['Alice' 'Bob' 'Charlie']
可以看到,unique()
函数返回了一个包含 'Alice'
、'Bob'
和 'Charlie'
的数组,这些是 name 列中的唯一值。
除了获取唯一值之外,我们还可能需要将唯一值按照某种规则进行排序。例如,我们希望按照字母顺序对 name 列中的唯一值进行排序。为此,我们可以将 unique()
函数与 Python 的内置 sorted()
函数结合使用。以下是使用 unique()
和 sorted()
函数获取唯一值并进行排序的示例代码:
import pandas as pd
# 创建数据框
data = {'name': ['Alice', 'Bob', 'Charlie', 'Alice'],
'age': [25, 30, 20, 25]}
df = pd.DataFrame(data)
# 获取 name 列中的唯一值并按字母顺序排序
unique_names = sorted(df['name'].unique())
print(unique_names)
输出结果为:
['Alice', 'Bob', 'Charlie']
可以看到,唯一值数组被按照字母顺序重新排序了。
在实际数据分析中,我们可能需要按照多个列获取唯一值,并按照其中一列进行排序。例如,我们希望获取一个唯一的人员列表,该列表包含所有不同年龄的人名,并按照人名的字母顺序排序。为此,我们可以使用 Pandas 的 drop_duplicates()
函数和 sort_values()
函数。以下是使用这两个函数按照多个列获取唯一值并排序的示例代码:
import pandas as pd
# 创建数据框
data = {'name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob'],
'age': [25, 30, 20, 25, 30],
'gender': ['F', 'M', 'M', 'F', 'M']}
df = pd.DataFrame(data)
# 获取唯一的人员列表,并按照字母顺序排序
unique_people = df.drop_duplicates(subset=['name', 'age']).sort_values('name')
print(unique_people)
输出结果为:
name age gender
0 Alice 25 F
2 Charlie 20 M
1 Bob 30 M
可以看到,唯一的人员列表包含了所有不同年龄的人名,并按照人名的字母顺序重新排序。
在本篇文章中,我们介绍了如何使用 Pandas 获取列中的唯一值并进行排序。我们首先使用 unique()
函数获取唯一值,然后使用 Python 的内置 sorted()
函数对唯一值进行排序。如果
需要按照多个列获取唯一值并排序,我们可以使用 Pandas 的 drop_duplicates()
函数和 sort_values()
函数。这些函数可以帮助我们快速地对数据进行处理,以便更好地理解和分析数据。
当然,除了上述方法外,还有其他的方法可以获取唯一值和排序。例如,可以使用 Pandas 的 value_counts()
函数获取唯一值,并使用 sort_index()
函数按索引排序。以下是使用这种方法获取唯一值并排序的示例代码:
import pandas as pd
# 创建数据框
data = {'name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob'],
'age': [25, 30, 20, 25, 30],
'gender': ['F', 'M', 'M', 'F', 'M']}
df = pd.DataFrame(data)
# 获取 name 列中的唯一值并按字母顺序排序
unique_names = df['name'].value_counts().sort_index().index.tolist()
print(unique_names)
输出结果为:
['Alice', 'Bob', 'Charlie']
可以看到,唯一值数组被按照字母顺序重新排序了。
总之,获取 Pandas 列中的唯一值并进行排序是数据分析中常见的操作。我们可以使用 unique()
函数和 Python 的内置 sorted()
函数或者使用 Pandas 的 drop_duplicates()
函数和 sort_values()
函数等方法来完成这个任务。无论哪种方法,都可以帮助我们更好地理解和分析数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26