京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在进行机器学习建模时,我们通常需要将数据集分成训练集和测试集。这种做法能够帮助我们评估模型的性能,并检验模型是否过拟合或欠拟合。在SPSS中做二元logistic回归也不例外。
二元logistic回归是一种用来建立分类模型的方法,它可以处理二元响应变量(0或1)。如果你正在使用SPSS进行二元logistic回归,那么你需要先将数据集准备好。然后,按照以下步骤来划分训练集和测试集。
第一步:导入数据 在SPSS中,你需要首先导入你的数据集。你可以通过点击“文件”菜单下的“打开”选项来加载数据。另外,还可以通过复制粘贴等方式将数据集导入到SPSS中。
第二步:创建一个ID字段 为了确保每个观测值都被正确地分配到训练集或测试集中,你需要在数据集中添加一个唯一的标识符字段。该字段可以是任何类型,例如数字、字符等,并且必须包含唯一值。
第三步:随机划分训练集和测试集 在SPSS中,你可以使用“数据”菜单下的“拆分文件”选项来随机划分训练集和测试集。在“拆分文件”对话框中,你需要选择“分组变量”,并将ID字段拖放到该位置。然后,你需要选择将数据集拆分成多少份。例如,如果你想将数据集拆分为2份,则可以在“输出数据集”选项下选择“两部分”。
第四步:保存训练集和测试集 在拆分完数据集后,SPSS将会生成两个新的数据集。其中一个是训练集,另一个是测试集。你需要将这两个数据集保存到本地磁盘上。你可以使用“文件”菜单下的“保存”选项来保存数据集。
第五步:建立模型 现在,你已经准备好了训练集和测试集,可以开始建立二元logistic回归模型了。在SPSS中,你可以使用“回归”菜单下的“二元logistic回归”选项来建立模型。在该对话框中,你需要指定响应变量和自变量,并设置其他参数,例如阈值、迭代次数等。
第六步:评估模型性能 建立完模型后,你需要对其进行评估,以确保它具有良好的性能。在SPSS中,你可以使用“分类”菜单下的“交叉验证”选项来评估模型性能。该方法可以帮助你估计模型的准确性,并验证其是否具有过度拟合的问题。
总之,在SPSS中进行二元logistic回归时,你需要将数据集分成训练集和测试集。这样可以帮助你评估模型的性能,并检验模型是否过拟合或欠拟合。随机划分训练集和测试集是一种可靠的方法,可以帮助你获得更好的模型准确性。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12