京公网安备 11010802034615号
经营许可证编号:京B2-20210330
MySQL中的EXPLAIN命令可用于分析SELECT查询语句的执行计划。在EXPLAIN执行结果中,最常见的指标是“rows”,它表示MySQL估算在执行该查询时扫描的行数。本文将深入探讨MySQL中EXPLAIN执行结果中的rows统计原理。
在MySQL中,使用索引或全表扫描来获取查询结果的成本不同。MySQL会根据查询语句和数据表的特性,选择最优的查询执行计划。在进行查询执行计划之前,MySQL会收集表的统计信息,并根据这些统计信息进行优化选择。
对于一个给定的SELECT查询语句,MySQL会生成一棵查询执行计划树,其中每个节点代表一个操作步骤。这些操作步骤可能包括从单个表中读取行、合并两个有序列表、连接两个表等。在这个执行计划树中,每个节点都有一个估算值,表示这个操作步骤需要处理多少行数据。
当用户执行一个SELECT查询语句时,MySQL首先解析该语句,并将其转换为一个查询执行计划树。然后,MySQL会遍历该执行计划树,根据查询执行计划树上的每个节点计算出该节点需要处理的行数。这些行数累加到最终结果中,最终得到了查询所要扫描的总行数。
在MySQL中,EXPLAIN命令使用这种估算方法来预测查询执行的成本。当用户运行EXPLAIN命令时,MySQL会计算查询语句的执行计划树,并将每个节点的估算行数作为输出结果的一部分之一。其中,最重要的估算值是“All rows”(所有行),它表示整个查询语句会扫描多少行数据。此外,还有其他估算值,如“Filtered”(过滤)和“Using index”(使用索引)等。
下面我们来看几种常见情况下,MySQL如何计算rows值:
当我们对一个数据表执行SELECT查询时,MySQL会统计该表总行数,然后返回rows值为表的总行数。这是最简单和最基本的情况。
当我们在单个表上使用WHERE条件进行过滤时,MySQL会首先根据WHERE条件过滤出匹配的记录,然后根据实际匹配的行数计算rows值。
例如,如果我们有一个名为“users”的数据表,其中包含1000行记录,我们执行以下查询:
SELECT * FROM users WHERE age > 18;
MySQL会首先扫描整张表,找到所有年龄超过18岁的用户记录,并返回这些记录的行数作为rows值。这个值通常小于表的总行数。
在多表查询时,MySQL会根据连接类型和连接条件来计算rows值。对于INNER JOIN、LEFT JOIN和RIGHT JOIN等连接类型,MySQL会根据连接条件上的过滤条件来估算返回结果的行数。
例如,如果我们有一个名为“users”的数据表和一个名为“orders”的数据表,其中“orders”表包含10000行记录,我们执行以下查询:
SELECT * FROM users INNER JOIN orders ON users.id = orders.user_id;
MySQL会首先根据连接条件找到两个表中相匹配的记录,并返回这些记录的行数作为rows值。在这种情况下,该值通常小于两个表的总行数之和。
当我们在查询语句中使用索引时,MySQL可以通过索引统计信息来估算需要扫描的行数。例如,如果我们有一个名为“users
”的数据表,并在其中创建了一个名为“idx_age”的索引,我们执行以下查询:
SELECT * FROM users WHERE age > 18;
MySQL会使用“idx_age”索引来查找符合条件的记录。它可以根据该索引中存储的统计信息来估算需要扫描的行数。
当我们在查询语句中使用聚合函数时,MySQL会根据GROUP BY子句或DISTINCT关键字来计算rows值。例如,如果我们有一个名为“users”的数据表,并执行以下查询:
SELECT COUNT(DISTINCT age) FROM users;
MySQL会根据DISTINCT关键字统计出表中不同年龄的数量,并将其返回作为rows值。
当我们在查询语句中使用子查询时,MySQL会首先计算子查询语句的rows值,然后将其作为父查询的输入。例如,如果我们有一个名为“orders”的数据表和一个名为“users”的数据表,其中“orders”表包含10000行记录,我们执行以下查询:
SELECT * FROM orders WHERE user_id IN (SELECT id FROM users WHERE age > 18);
MySQL会首先执行子查询,找到所有年龄大于18岁的用户ID,然后将这些ID与“orders”表中的user_id列进行匹配。MySQL将使用子查询的rows值来计算父查询的rows值。
总之,MySQL中EXPLAIN执行结果中的rows值是根据查询执行计划估算的结果,这些估算值基于表的统计信息、查询语句和数据表特性等多种因素。虽然rows值只是一个估算值,但它可以帮助我们优化查询语句,减少查询的执行时间。如果需要进一步了解MySQL中的查询优化,请参考MySQL官方文档。
数据库知识对于数据分析工作至关重要,其中 SQL 更是数据获取与处理的关键技能。如果你想进一步提升自己在数据分析领域的能力,学会灵活运用 SQL 进行数据挖掘与分析,那么强烈推荐你学习《SQL 数据分析极简入门》
学习入口:https://edu.cda.cn/goods/show/3412?targetId=5695&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12