京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas是Python中最常用的数据处理库之一,它提供了许多方便的函数和工具来处理和操纵数据。其中,fillna()函数是Pandas中一个非常重要的函数,其作用是填充缺失值。
在数据分析和建模的过程中,我们经常会遇到缺失值的情况。这些缺失值可能是由于数据采集或处理过程中的错误,也可能是由于数据本身就不存在或不可获取造成的。不论是哪种情况,缺失值都会对数据的分析和建模造成影响,因此需要进行处理。
fillna()函数主要有两个参数:value和method。其中,value参数可以指定任何想要使用的值来填充缺失值,而method参数则可以使用不同的插值方法来填充缺失值。接下来,我们将详细介绍fillna()函数的用法和各种选项。
df['age'].fillna(0, inplace=True)
这将把df数据框中所有缺失的age变量值都填充为0,而原始数据框df本身也会被修改。如果不使用inplace参数,则需要将结果分配给一个新的数据框。
ts.fillna(method='ffill', inplace=True)
这将把ts数据框中所有缺失的值都填充为前一个非缺失值。同样地,如果要使用后一个非缺失值来填充缺失值,可以使用‘bfill’参数。
df['age'].fillna(df['age'].median(), inplace=True)
这将把df数据框中所有缺失的age变量值都填充为age的中位数。
如下代码来删除所有包含缺失值的行:
df.dropna(inplace=True)
这将删除df数据框中所有包含缺失值的行,而原始数据框df本身也会被修改。如果不使用inplace参数,则需要将结果分配给一个新的数据框。
总结: fillna()函数是Pandas中一个非常有用的函数,它可以用来填充缺失值、处理异常值和数据清洗等。在实际应用中,我们需要根据具体情况选择合适的填充方式,以便更好地进行分析和建模。同时,我们还需要注意填充后的数据质量,避免填充后的数据造成错误的解释和决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12