京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在 Pandas 中,NaN 表示空或缺失值。在数据分析中,经常需要计算 DataFrame 中每列的 NaN 值出现的次数。本文将介绍如何使用 Pandas 计算 DataFrame 中每列的 NaN 值出现的次数。
Pandas 是一个开源数据分析工具。它提供了一个称为“DataFrame”的数据结构,该结构类似于电子表格,可以用来存储和操作二维数据。在 Pandas DataFrame 中,NaN 表示空或缺失值。在实际的数据分析中,会经常遇到缺失值的情况,因此我们需要计算 DataFrame 中每列的 NaN 值出现的次数。
计算 DataFrame 中每列的 NaN 值数量非常简单。我们只需要使用 isna() 方法检测 DataFrame 中的 NaN 值,并使用 sum() 方法计算每列中 NaN 值的数量。以下是示例代码:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, np.nan],
'B': [4, np.nan, np.nan],
'C': [7, 8, 9]})
print(df.isna().sum())
上面的代码将创建一个包含三列的 Pandas DataFrame。然后使用 isna() 方法检查 DataFrame 中的 NaN 值,并使用 sum() 方法计算每列的 NaN 值的数量。输出结果如下:
A 1
B 2
C 0
dtype: int64
从输出结果可以看出,DataFrame 中的 NaN 值数量分别为 1、2 和 0。
如果需要计算每行的 NaN 值数量,可以使用 sum() 方法并设置 axis 参数为 1。以下是示例代码:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, np.nan],
'B': [4, np.nan, np.nan],
'C': [7, 8, 9]})
print(df.isna().sum(axis=1))
上面的代码将创建一个包含三列的 Pandas DataFrame。然后使用 isna() 方法检查 DataFrame 中的 NaN 值,并使用 sum() 方法计算每行的 NaN 值的数量。输出结果如下:
0 0
1 2
2 0
dtype: int64
从输出结果可以看出,DataFrame 中的每行的 NaN 值数量分别为 0、2 和 0。
在 Pandas 中计算 DataFrame 中每列或每行的 NaN 值数量非常简单。只需要使用 isna() 方法检查 DataFrame 中的 NaN 值,并使用 sum() 方法计算每列或每行的 NaN 值的数量。此外,还可以使用 dropna() 方法删除 DataFrame 中包含 NaN 值的行或列。掌握这些技巧可以使数据分析更加高效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12