
在数据分析和处理中,pandas是一个强大的工具。它可以轻松地在Python中进行数据处理,以及进行多种常见的数据操作,如索引、切片、聚合和过滤等。在这篇文章中,我们将学习如何使用pandas提取每天固定时间段的数据。
Pandas是一个基于NumPy的库,因此它的许多操作都与NumPy非常相似。 Pandas中的核心数据结构是Series和DataFrame。 Series是一维数组,DataFrame则是二维表格,类似于Excel或SQL中的表。
首先,我们需要创建一个DataFrame以便进行演示。为了简单起见,我们将使用由日期、时间和值组成的随机数据集。下面是示例代码:
import pandas as pd
import numpy as np
# 创建日期范围
dates = pd.date_range('2022-01-01', periods=24*60, freq='T')
# 创建数据集
data = pd.DataFrame({'date_time': dates,
'value': np.random.randint(0, 100, size=len(dates))})
接下来,我们可以使用pandas的resample方法来按照指定的时间间隔对数据进行重新采样。例如,我们希望每小时获取数据的平均值,则可以执行以下操作:
# 按小时重采样并计算平均值
hourly_data = data.resample('H', on='date_time').mean()
在这里,“H”表示小时,on参数指定我们要对哪一列进行重采样。 在这种情况下,我们使用“date_time”列。
现在,假设我们想提取每天固定时间段的数据,比如上午10点到中午12点之间的数据。 我们可以使用pandas的between_time方法来过滤出该时间段内的数据。 下面是示例代码:
# 设置索引为日期时间
data = data.set_index('date_time')
# 提取每天10:00-12:00的数据
ten_to_twelve_data = data.between_time('10:00', '12:00')
在这里,我们将日期时间设置为索引,并使用between_time方法过滤出上午10点到中午12点之间的数据。 注意,我们使用24小时制指定时间。如果您想使用12小时制,则必须指定AM或PM。
最后,我们可以将结果可视化以便查看。以下是示例代码:
import matplotlib.pyplot as plt
# 绘制原始数据和每天10:00-12:00的数据
plt.plot(data.index, data['value'], label='Raw Data')
plt.plot(ten_to_twelve_data.index, ten_to_twelve_data['value'], label='10:00-12:00 Data')
plt.legend()
plt.show()
在这里,我们使用matplotlib库绘制了原始数据和提取出来的上午10点到中午12点之间的数据。
总结:本文介绍了如何使用Pandas提取每天固定时间段的数据。 首先,我们创建了一个包含随机日期时间和值的DataFrame。 然后,我们使用pandas的resample方法对数据进行了重采样,以及使用between_time方法过滤出了每天10点到中午12点之间的数据。 最后,我们将结果可视化以便查看。Pandas是Python中必不可少的工具之一,特别是在数据处理和分析方面,它可以帮助我们节省大量时间和精力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27