京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据分析和处理中,pandas是一个强大的工具。它可以轻松地在Python中进行数据处理,以及进行多种常见的数据操作,如索引、切片、聚合和过滤等。在这篇文章中,我们将学习如何使用pandas提取每天固定时间段的数据。
Pandas是一个基于NumPy的库,因此它的许多操作都与NumPy非常相似。 Pandas中的核心数据结构是Series和DataFrame。 Series是一维数组,DataFrame则是二维表格,类似于Excel或SQL中的表。
首先,我们需要创建一个DataFrame以便进行演示。为了简单起见,我们将使用由日期、时间和值组成的随机数据集。下面是示例代码:
import pandas as pd
import numpy as np
# 创建日期范围
dates = pd.date_range('2022-01-01', periods=24*60, freq='T')
# 创建数据集
data = pd.DataFrame({'date_time': dates,
'value': np.random.randint(0, 100, size=len(dates))})
接下来,我们可以使用pandas的resample方法来按照指定的时间间隔对数据进行重新采样。例如,我们希望每小时获取数据的平均值,则可以执行以下操作:
# 按小时重采样并计算平均值
hourly_data = data.resample('H', on='date_time').mean()
在这里,“H”表示小时,on参数指定我们要对哪一列进行重采样。 在这种情况下,我们使用“date_time”列。
现在,假设我们想提取每天固定时间段的数据,比如上午10点到中午12点之间的数据。 我们可以使用pandas的between_time方法来过滤出该时间段内的数据。 下面是示例代码:
# 设置索引为日期时间
data = data.set_index('date_time')
# 提取每天10:00-12:00的数据
ten_to_twelve_data = data.between_time('10:00', '12:00')
在这里,我们将日期时间设置为索引,并使用between_time方法过滤出上午10点到中午12点之间的数据。 注意,我们使用24小时制指定时间。如果您想使用12小时制,则必须指定AM或PM。
最后,我们可以将结果可视化以便查看。以下是示例代码:
import matplotlib.pyplot as plt
# 绘制原始数据和每天10:00-12:00的数据
plt.plot(data.index, data['value'], label='Raw Data')
plt.plot(ten_to_twelve_data.index, ten_to_twelve_data['value'], label='10:00-12:00 Data')
plt.legend()
plt.show()
在这里,我们使用matplotlib库绘制了原始数据和提取出来的上午10点到中午12点之间的数据。
总结:本文介绍了如何使用Pandas提取每天固定时间段的数据。 首先,我们创建了一个包含随机日期时间和值的DataFrame。 然后,我们使用pandas的resample方法对数据进行了重采样,以及使用between_time方法过滤出了每天10点到中午12点之间的数据。 最后,我们将结果可视化以便查看。Pandas是Python中必不可少的工具之一,特别是在数据处理和分析方面,它可以帮助我们节省大量时间和精力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27