
在 Pandas 中,DataFrame 是一个非常重要且常用的数据结构,它提供了对表格数据进行操作的强大功能。当我们需要遍历 DataFrame 的行时,通常有两种方法可供选择:使用 iterrows() 方法和使用 itertuples() 方法。这篇文章将详细介绍这两种方法的使用方法和性能差异。
iterrows() 方法是 Pandas 中最常用的遍历 DataFrame 行的方法之一。它可以将 DataFrame 中的每一行转换为一个元组,其中包含行索引和行数据。下面是使用 iterrows() 方法遍历 DataFrame 行的基本示例:
import pandas as pd
# 创建一个 DataFrame
df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
# 遍历 DataFrame 行
for index, row in df.iterrows():
print(f"Row index: {index}, Row data: {row}")
在上面的代码中,我们首先创建了一个简单的 DataFrame,然后使用 iterrows() 方法遍历了每一行,并打印出了行索引和行数据。输出结果如下:
Row index: 0, Row data: col1 1
col2 3
Name: 0, dtype: int64
Row index: 1, Row data: col1 2
col2 4
Name: 1, dtype: int64
从输出结果可以看出,iterrows() 方法返回的是一个元组,其中第一个元素是行索引,第二个元素是一个 Series 对象,它包含了该行的数据。我们可以使用 .loc[] 方法来访问该 Series 对象中的每个元素。
虽然 iterrows() 方法非常方便,但它并不适合处理大型 DataFrame。这是因为 iterrows() 是一种基于 Python for 循环的方法,它需要遍历整个 DataFrame 的每一行,并将其转换为一个元组。对于大型 DataFrame,这种方法的计算成本非常高,因此可能会导致性能问题。
如果您需要处理大型 DataFrame,那么建议使用 itertuples() 方法而不是 iterrows() 方法。itertuples() 方法返回一个生成器对象,其中包含每一行的命名元组(namedtuple)。与 iterrows() 方法不同,itertuples() 方法会在 DataFrame 中更快地处理大量数据。下面是使用 itertuples() 方法遍历 DataFrame 行的示例:
import pandas as pd
# 创建一个 DataFrame
df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
# 遍历 DataFrame 行
for row in df.itertuples():
print(row)
在上面的代码中,我们首先创建了一个简单的 DataFrame,然后使用 itertuples() 方法遍历了每一行,并打印出了命名元组。输出结果如下:
Pandas(Index=0, col1=1, col2=3)
Pandas(Index=1, col1=2, col2=4)
从输出结果可以看出,itertuples() 方法返回的是一个命名元组,其中包含行索引和行数据。与 iterrows() 方法不同,它并没有将每一行转换为一个 Series 对象。这样可以减少额外的计算成本,并提高代码的性能。
使用 iterrows() 方法或 itertuples() 方法都可以遍历 DataFrame 行。但是,由于 iterrows() 方法需要将每一行转换为一个元组,因此它在处理大型 DataFrame 时可能会导致性能问题。相比之下,itertuples() 方法更加快速和高效,因为它直接返回一个元组,而不需要将其转换为 Series 对象。
因此,建议在处理大型 DataFrame 时使用 itertuples() 方法,以
提高代码的性能。但是,在处理小型 DataFrame 时,iterrows() 方法的速度可能更快,因为它比 itertuples() 方法少了一些额外的计算成本。
另外,需要注意的是,使用 iterrows() 方法或 itertuples() 方法遍历 DataFrame 行时,都不能修改数据框的值。如果需要修改 DataFrame 数据,则应该使用 .loc[] 方法或类似方法。
遍历 DataFrame 行是在 Pandas 中常见的操作之一。有两种方法可以实现这个目标:iterrows() 方法和itertuples() 方法。虽然这两种方法都可以遍历 DataFrame 行,但是它们的性能差异很大。如果需要处理大型 DataFrame,则建议使用 itertuples() 方法以提高代码的性能。但是,在处理小型 DataFrame 时,iterrows() 方法可能更快。
无论使用哪种方法,都应该记住不能直接修改 DataFrame 的值。如果需要修改 DataFrame 数据,则应该使用类似 .loc[] 方法的方法。
希望本文对您在 Pandas 中遍历 DataFrame 行有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27