京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas 是 Python 中非常流行的数据操作和分析库之一。其中,DataFrame 是 Pandas 提供的一个非常有用的数据结构,它类似于 SQL 中的表格,可以存储二维数组、CSV 文件、Excel 表格等数据。在 Pandas 中,有很多方法可以遍历 DataFrame,但是如何在遍历时修改数据呢?本文将探讨这个问题,并提供一些示例代码。
在 Pandas 中,有两种方式可以遍历 DataFrame,分别是使用 for 循环和 iterrows() 方法。下面我们分别介绍一下这两种方式。
使用 for 循环遍历 DataFrame 的方法很简单,只需要像遍历列表一样来遍历 DataFrame 即可。例如:
import pandas as pd
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]}) for index, row in df.iterrows(): print(row['name'], row['age'])
输出结果为:
Alice 25 Bob 30 Charlie 35
在上面的代码中,我们通过 iterrows() 方法来遍历 DataFrame,其中 index 表示索引,row 表示每一行的数据。对于每一行的数据,我们可以通过 row['name'] 或者 row['age'] 来获取其中的某一个值。
iterrows() 方法是 Pandas 中另一种遍历 DataFrame 的方式。它返回一个迭代器,可以通过 for 循环来遍历 DataFrame 中的每一行数据。例如:
import pandas as pd
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]}) for index, row in df.iterrows(): print(row['name'], row['age'])
输出结果为:
Alice 25 Bob 30 Charlie 35
在上面的代码中,我们同样使用了 iterrows() 方法来遍历 DataFrame。其中 index 表示索引,row 表示每一行数据。对于每一行数据,我们同样可以通过 row['name'] 或者 row['age'] 来获取其中的某一个值。
在遍历 DataFrame 的过程中,我们有时候需要对其中的数据进行修改。那么如何在遍历 DataFrame 的同时修改其中的数据呢?下面我们介绍两种方法:使用 at() 方法和使用 loc() 方法。
at() 方法可以用来选择 DataFrame 中的某一个元素,并且可以将其修改为指定的值。例如:
import pandas as pd
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]}) for index, row in df.iterrows(): if row['name'] == 'Alice':
df.at[index, 'age'] = 26 print(df)
输出结果为:
name age 0 Alice 26 1 Bob 30 2 Charlie 35
在上面的代码中,我们使用 for 循环遍历了 DataFrame,并且通过 if 语句来判断当前行的 name 是否为 'Alice'。如果是,我们就使用 at() 方法将该行的 age 修改为 26。
loc() 方法可以用来选取 DataFrame 中的一部分数据,并且可以对其进行修改。例如:
import pandas as pd
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]})
df.loc[df['name'] == 'Alice', 'age'] = 26 print(df)
输出结果为:
name age 0 Alice 26 1 Bob 30 2 Charlie 35
在上面的代码中,我们使用了 loc() 方法来选取 DataFrame 中 name 为 'Alice' 的那一行,并将其中的 age 修改为 26。
在
本文中,我们介绍了 Pandas 中遍历 DataFrame 的两种方式:使用 for 循环和 iterrows() 方法。同时,我们也介绍了两种在遍历时修改 DataFrame 数据的方法:使用 at() 方法和 loc() 方法。
需要注意的是,在遍历 DataFrame 并且修改其中的数据时,我们需要小心地处理索引值和行列标签,以避免出现错误结果。另外,在涉及到大规模数据处理时,尽可能使用向量化方法来进行操作,可以显著提高代码的效率。
总之,Pandas 提供了非常强大的数据操作功能。熟练掌握 DataFrame 的遍历和修改技巧,可以让我们更加高效地完成数据分析和处理任务。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06