
Pandas 是 Python 中非常流行的数据操作和分析库之一。其中,DataFrame 是 Pandas 提供的一个非常有用的数据结构,它类似于 SQL 中的表格,可以存储二维数组、CSV 文件、Excel 表格等数据。在 Pandas 中,有很多方法可以遍历 DataFrame,但是如何在遍历时修改数据呢?本文将探讨这个问题,并提供一些示例代码。
在 Pandas 中,有两种方式可以遍历 DataFrame,分别是使用 for 循环和 iterrows() 方法。下面我们分别介绍一下这两种方式。
使用 for 循环遍历 DataFrame 的方法很简单,只需要像遍历列表一样来遍历 DataFrame 即可。例如:
import pandas as pd
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]}) for index, row in df.iterrows(): print(row['name'], row['age'])
输出结果为:
Alice 25 Bob 30 Charlie 35
在上面的代码中,我们通过 iterrows() 方法来遍历 DataFrame,其中 index 表示索引,row 表示每一行的数据。对于每一行的数据,我们可以通过 row['name'] 或者 row['age'] 来获取其中的某一个值。
iterrows() 方法是 Pandas 中另一种遍历 DataFrame 的方式。它返回一个迭代器,可以通过 for 循环来遍历 DataFrame 中的每一行数据。例如:
import pandas as pd
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]}) for index, row in df.iterrows(): print(row['name'], row['age'])
输出结果为:
Alice 25 Bob 30 Charlie 35
在上面的代码中,我们同样使用了 iterrows() 方法来遍历 DataFrame。其中 index 表示索引,row 表示每一行数据。对于每一行数据,我们同样可以通过 row['name'] 或者 row['age'] 来获取其中的某一个值。
在遍历 DataFrame 的过程中,我们有时候需要对其中的数据进行修改。那么如何在遍历 DataFrame 的同时修改其中的数据呢?下面我们介绍两种方法:使用 at() 方法和使用 loc() 方法。
at() 方法可以用来选择 DataFrame 中的某一个元素,并且可以将其修改为指定的值。例如:
import pandas as pd
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]}) for index, row in df.iterrows(): if row['name'] == 'Alice':
df.at[index, 'age'] = 26 print(df)
输出结果为:
name age 0 Alice 26 1 Bob 30 2 Charlie 35
在上面的代码中,我们使用 for 循环遍历了 DataFrame,并且通过 if 语句来判断当前行的 name 是否为 'Alice'。如果是,我们就使用 at() 方法将该行的 age 修改为 26。
loc() 方法可以用来选取 DataFrame 中的一部分数据,并且可以对其进行修改。例如:
import pandas as pd
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]})
df.loc[df['name'] == 'Alice', 'age'] = 26 print(df)
输出结果为:
name age 0 Alice 26 1 Bob 30 2 Charlie 35
在上面的代码中,我们使用了 loc() 方法来选取 DataFrame 中 name 为 'Alice' 的那一行,并将其中的 age 修改为 26。
在
本文中,我们介绍了 Pandas 中遍历 DataFrame 的两种方式:使用 for 循环和 iterrows() 方法。同时,我们也介绍了两种在遍历时修改 DataFrame 数据的方法:使用 at() 方法和 loc() 方法。
需要注意的是,在遍历 DataFrame 并且修改其中的数据时,我们需要小心地处理索引值和行列标签,以避免出现错误结果。另外,在涉及到大规模数据处理时,尽可能使用向量化方法来进行操作,可以显著提高代码的效率。
总之,Pandas 提供了非常强大的数据操作功能。熟练掌握 DataFrame 的遍历和修改技巧,可以让我们更加高效地完成数据分析和处理任务。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27