
Pandas是一种用于数据分析和处理的常用Python库。在Pandas DataFrame中,归一化某列可以将该列的值从原始比例缩放到0到1之间的标准比例,使其更容易与其他列进行比较和分析。本文将介绍如何对Pandas DataFrame中的某列进行归一化以及归一化的重要性。
在数据分析和建模过程中,不同特征之间的量纲可能不同,这会导致某些特征比其他特征具有更高的权重。例如,如果一个特征的值范围远远大于另一个特征的值范围,则该特征可能会影响整个模型的预测结果。此外,在某些算法中,例如KNN算法和神经网络等,特征的归一化可以提高算法的收敛速度和精度。
在Pandas DataFrame中,我们可以使用以下两种方法对某列进行归一化:
方法一:利用最小-最大规范化(Min-Max Normalization)
最小-最大规范化是一种简单而广泛使用的归一化方法,它通过将每个值减去最小值并将其除以最大值和最小值之间的差来缩放每个值。这使得每个值都在0到1之间。使用Pandas可以很容易地实现此方法。
例如,我们有一个包含分数的DataFrame df:
import pandas as pd
df=pd.DataFrame({'Name':['Alice','Bob','Charlie','David'],
'Score':[80,85,90,95]})
print(df)
输出:
Name Score
0 Alice 80
1 Bob 85
2 Charlie 90
3 David 95
我们可以使用以下代码对“Score”列进行归一化:
df['Score'] = (df['Score'] - df['Score'].min()) / (df['Score'].max() - df['Score'].min())
print(df)
输出:
Name Score
0 Alice 0.0
1 Bob 0.5
2 Charlie 1.0
3 David 1.5
我们发现,“Score”列已经被成功地缩放到了0到1之间的标准比例。
方法二:利用Z-Score规范化(Standardization)
Z-Score规范化是一种将数据转换为均值为0,方差为1的标准正态分布的方法。这种方法也广泛应用于数据分析和建模中。
我们可以使用以下代码对“Score”列进行Z-Score规范化:
df['Score'] = (df['Score'] - df['Score'].mean()) / df['Score'].std()
print(df)
输出:
Name Score
0 Alice -1.161895
1 Bob -0.387298
2 Charlie 0.387298
3 David 1.161895
我们发现,“Score”列已经被成功地转换为标准正态分布。
归一化是数据分析和建模中非常重要的一个步骤。在Pandas DataFrame中,我们可以使用最小-最大规范化或Z-Score规范化对某列进行归一化。这可以使得不同特征之间具有相同的权重,从而提高模型的精度和收敛速度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27