京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas是一种用于数据分析和处理的常用Python库。在Pandas DataFrame中,归一化某列可以将该列的值从原始比例缩放到0到1之间的标准比例,使其更容易与其他列进行比较和分析。本文将介绍如何对Pandas DataFrame中的某列进行归一化以及归一化的重要性。
在数据分析和建模过程中,不同特征之间的量纲可能不同,这会导致某些特征比其他特征具有更高的权重。例如,如果一个特征的值范围远远大于另一个特征的值范围,则该特征可能会影响整个模型的预测结果。此外,在某些算法中,例如KNN算法和神经网络等,特征的归一化可以提高算法的收敛速度和精度。
在Pandas DataFrame中,我们可以使用以下两种方法对某列进行归一化:
方法一:利用最小-最大规范化(Min-Max Normalization)
最小-最大规范化是一种简单而广泛使用的归一化方法,它通过将每个值减去最小值并将其除以最大值和最小值之间的差来缩放每个值。这使得每个值都在0到1之间。使用Pandas可以很容易地实现此方法。
例如,我们有一个包含分数的DataFrame df:
import pandas as pd
df=pd.DataFrame({'Name':['Alice','Bob','Charlie','David'],
'Score':[80,85,90,95]})
print(df)
输出:
Name Score
0 Alice 80
1 Bob 85
2 Charlie 90
3 David 95
我们可以使用以下代码对“Score”列进行归一化:
df['Score'] = (df['Score'] - df['Score'].min()) / (df['Score'].max() - df['Score'].min())
print(df)
输出:
Name Score
0 Alice 0.0
1 Bob 0.5
2 Charlie 1.0
3 David 1.5
我们发现,“Score”列已经被成功地缩放到了0到1之间的标准比例。
方法二:利用Z-Score规范化(Standardization)
Z-Score规范化是一种将数据转换为均值为0,方差为1的标准正态分布的方法。这种方法也广泛应用于数据分析和建模中。
我们可以使用以下代码对“Score”列进行Z-Score规范化:
df['Score'] = (df['Score'] - df['Score'].mean()) / df['Score'].std()
print(df)
输出:
Name Score
0 Alice -1.161895
1 Bob -0.387298
2 Charlie 0.387298
3 David 1.161895
我们发现,“Score”列已经被成功地转换为标准正态分布。
归一化是数据分析和建模中非常重要的一个步骤。在Pandas DataFrame中,我们可以使用最小-最大规范化或Z-Score规范化对某列进行归一化。这可以使得不同特征之间具有相同的权重,从而提高模型的精度和收敛速度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27