
PyTorch 是一种非常流行的深度学习框架,但是它不太适合在嵌入式系统和实时部署上使用,因为它在计算上的速度相对较慢。为了加速 PyTorch 模型的推理,可以使用 NVIDIA 的 TensorRT 库。TensorRT 旨在优化深度学习模型的推理,并提供了一个 API,可以将训练好的模型转换为 TensorRT 可以优化的格式。
本文将介绍如何将 PyTorch 模型转换为 TensorRT 格式,并使用 C++ 代码来加载和运行优化的模型。
在开始之前,您需要安装以下软件:
确保将这些软件正确安装并配置。
首先,需要将 PyTorch 模型转换为 ONNX 格式。ONNX 是一种开放式神经网络交换格式,可以使模型在不同框架之间移植。对于本示例,我们将使用 ResNet18 模型演示如何将其转换为 ONNX 格式。
import torch
import torchvision.models as models
# 加载模型
model = models.resnet18(pretrained=True)
model.eval()
# 创建一个虚拟输入张量
x = torch.randn(1, 3, 224, 224)
# 将模型转换为 ONNX 格式
torch.onnx.export(model, x, "resnet18.onnx", opset_version=11)
torch.onnx.export
函数将模型及其输入张量作为输入,并将其导出到指定的文件中。在此示例中,我们将该文件命名为 resnet18.onnx
。
接下来,我们将使用 TensorRT 转换器将 ONNX 模型转换为 TensorRT 格式。TensorRT 提供了一个用于转换 ONNX 模型的 Python API。
import tensorrt as trt
import onnx
# 加载 ONNX 模型
onnx_model = onnx.load("resnet18.onnx")
# 创建 TensorRT 引擎
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
# 解析 ONNX 模型
parser.parse(onnx_model.SerializeToString())
# 配置构建器
builder.max_batch_size = 1
builder.max_workspace_size = 1 << 30
# 构建引擎
engine = builder.build_cuda_engine(network)
# 保存 TensorRT 引擎
with open("resnet18.engine", "wb") as f:
f.write(engine.serialize())
在此示例中,我们首先加载 ONNX 模型,然后创建一个 TensorRT 构建器和网络。接下来,我们使用 TensorRT 的 ONNX 解析器解析 ONNX 模型。一旦解析完毕,我们就可以使用构建器构建引擎。最后,我们将引擎序列化并保存到磁盘上。
现在,我们已经将 PyTorch 模型转换为 TensorRT 格式并保存了 TensorRT 引擎。接下来,我们需要使用 C++ 代码加载并运行优化的模型。
以下是加载引擎并运行推理的简单示例:
#include
#include
#include "NvInfer.h"
using namespace nvinfer1;
int main()
{
// 读取 TensorRT
引擎
std::ifstream engineFile("resnet18.engine", std::ios::binary);
engineFile.seekg(0, engineFile.end);
int modelSize = engineFile.tellg();
engineFile.seekg(0, engineFile.beg);
std::vector
// 创建 TensorRT 的执行上下文
IRuntime* runtime = createInferRuntime(gLogger);
ICudaEngine* engine = runtime->deserializeCudaEngine(engineData.data(), modelSize);
IExecutionContext* context = engine->createExecutionContext();
// 创建输入和输出张量
const int batchSize = 1;
const int inputChannel = 3;
const int inputHeight = 224;
const int inputWidth = 224;
const int outputClass = 1000;
float inputData[batchSize * inputChannel * inputHeight * inputWidth];
float outputData[batchSize * outputClass];
// 设置输入数据
// ...
// 执行推理
void* bindings[] = {inputData, outputData};
context->execute(batchSize, bindings);
// 处理输出数据
// ...
// 清理内存
// ...
}
在此示例中,我们首先读取之前保存的 TensorRT 引擎。然后,我们使用 TensorRT 的运行时 API 创建一个执行上下文,并从引擎中创建一个 CUDA 引擎对象。
接下来,我们设置输入和输出张量,并将输入数据传递给模型。最后,我们使用执行上下文执行推理,并处理输出数据。
## 总结
在本文中,我们介绍了如何使用 TensorRT 将 PyTorch 模型转换为优化的 TensorRT 格式,并使用 C++ 代码加载和运行优化的模型。这种方法可以加速深度学习模型的推理速度,并使它们更适合于嵌入式系统和实时部署。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01