京公网安备 11010802034615号
经营许可证编号:京B2-20210330
MySQL是一款广泛使用的开源关系型数据库管理系统,许多企业和公司都选择使用MySQL作为他们的数据库。在处理大型数据时,MySQL需要进行优化以提高性能和效率。本文将探讨如何通过参数设置来优化MySQL以应对两亿行的大表读取需求。
MySQL使用了很多内存来加速查询和数据操作。可以通过修改以下参数来调整缓存:
1)innodb_buffer_pool_size:该参数决定了InnoDB存储引擎使用的缓冲池的大小。建议将其设置为服务器RAM的70-80%。
2)query_cache_type:如果您经常执行相同的查询,则可以启用查询缓存以减少重复查询的次数。但是,对于频繁更新的表,查询缓存可能会减慢性能。因此,建议将其设置为DEMAND或禁用。
3)sort_buffer_size和join_buffer_size:这两个参数决定了MySQL在排序和连接操作中使用的缓冲区的大小。建议根据您的系统内存来设置。
索引是MySQL优化的关键。它可以加速SELECT查询并提高性能。在处理大型表时,必须确保索引正确地创建和使用。以下是一些有关索引的最佳实践:
1)尽可能避免使用通配符查询(例如LIKE '%text%'),因为它们无法使用索引。
2)在WHERE子句中使用索引列,并且在JOIN和ORDER BY子句中使用索引。
3)根据数据类型和查询模式选择正确的索引类型(B-Tree、Hash和Full-Text)。
4)最好不要在大表上创建太多索引,因为它会增加写入的负担。
查询语句的编写方式会对性能产生很大影响。以下是一些有关查询语句的最佳实践:
1)尽量避免使用SELECT *,因为它会从表中检索所有列,而不是只检索需要的列。这会导致大量不必要的IO操作和网络流量。
2)避免使用子查询,因为它们会导致MySQL执行更多的查询操作。
3)使用EXPLAIN命令分析查询计划,以了解MySQL如何执行查询,并查看是否需要进一步优化查询。
4)避免在查询中使用函数,因为它们会导致MySQL无法使用索引。
当数据量超过MySQL的处理能力时,可以考虑使用分区和分片技术来扩展MySQL。分区将数据按范围或哈希函数分成若干块,每个块独立存储。分片则将数据分成多个独立的MySQL实例,每个实例负责一部分数据。
如果您已经尝试了上述优化方法,但还是无法满足读取需求,那么您可能需要考虑硬件升级。例如,增加RAM、使用SSD等,这将显著提高性能和效率。
总之,在处理两亿行的大表时,MySQL需要进行优化以提高性能和效率。通过调整缓存设置、使用索引、优化查询语句、分区和分片以及硬件升级,可以使MySQL更好地处理大型数据,满足读取需求。
数据库知识对于数据分析工作至关重要,其中 SQL 更是数据获取与处理的关键技能。如果你想进一步提升自己在数据分析领域的能力,学会灵活运用 SQL 进行数据挖掘与分析,那么强烈推荐你学习《SQL 数据分析极简入门》
学习入口:https://edu.cda.cn/goods/show/3412?targetId=5695&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27