京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Matplotlib是Python中广泛使用的绘图库,可以用来绘制各种类型的图形。在绘制图形时,有时会希望去除边框以使图像更加美观。在本文中,我们将探讨如何使用Matplotlib去除边框。
首先,让我们了解一下Matplotlib中绘制图形的基本步骤。通常,我们需要导入Matplotlib库,并使用其中的plot()函数创建一个新的图形对象。然后使用其他函数添加数据、标签和标题等元素,最后通过show()函数显示图形。
以下是一个简单的Matplotlib示例代码:
import matplotlib.pyplot as plt # 创建一个新的Figure对象 fig = plt.figure() # 添加数据 x = [1, 2, 3, 4]
y = [10, 20, 30, 40]
plt.plot(x, y) # 添加标题和标签 plt.title('My Plot')
plt.xlabel('X Label')
plt.ylabel('Y Label') # 显示图形 plt.show()
在上面的代码中,我们使用Matplotlib创建了一个新的Figure对象,并向其添加了数据、标题和标签等元素,最后通过show()函数显示图形。但是,如果您运行此代码,您可能会注意到图形周围有一个默认的白色边框。
现在,我们来看看如何去除这个边框。为了实现这一点,我们可以使用Axes对象的spines属性。 在Matplotlib中,Axes对象表示图形坐标系,并包含与该坐标系相关联的所有元素(例如,数据,标题,标签等)。每个Axes对象都有四条边框,即左边,右边,顶部和底部。spines属性是Axes对象的一个字典,可以用来访问和修改这些边框。
要去除边框,我们需要将所有四条边框的颜色设置为none或透明。这可以通过以下代码实现:
import matplotlib.pyplot as plt # 创建一个新的Figure对象 fig = plt.figure() # 添加数据 x = [1, 2, 3, 4]
y = [10, 20, 30, 40]
plt.plot(x, y) # 获取Axes对象并去除边框 ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['right'].set_color('none') # 添加标题和标签 plt.title('My Plot')
plt.xlabel('X Label')
plt.ylabel('Y Label') # 显示图形 plt.show()
在上面的代码中,我们使用gca()函数获取当前的Axes对象,并分别将其四条边框的颜色设置为none。这导致边框变为透明,并从图像中消失。
值得注意的是,我们还可以使用其他方法来调整边框的外观,例如更改线型,线宽和位置。例如,以下代码将左侧边框移动到x=0处,并将其线宽设置为3:
ax.spines['left'].set_position(('data', 0))
ax.spines['left'].set_linewidth(3)
总体而言,在Matplotlib中去除边框非常简单,只需使用Axes对象的spines属性并将边框颜色设置为none即可。通过这种方式,您可以轻松创建干净,简洁和专业的图形。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12