京公网安备 11010802034615号
经营许可证编号:京B2-20210330
卷积神经网络(CNN)和长短时记忆网络(LSTM)是两种广泛应用于图像识别和自然语言处理领域的深度学习模型。一种结合了这两种模型的网络称为卷积循环神经网络(CRNN)。本文将介绍CRNN的基本原理和实现过程。
一、CRNN的原理
CRNN的基本思想是通过CNN提取出图像的特征序列,然后通过LSTM对这个序列进行建模,最终输出分类结果。具体来说,CRNN包含三个主要组件:卷积层、循环层和全连接层。
卷积层是CNN中最常用的层,它能够从输入数据中提取出局部特征。在CRNN中,卷积层通常被用来提取图像的空间特征。比如我们可以使用几个卷积层来逐渐缩小输入图像的尺寸,并且在每个卷积层之后添加池化层来减轻模型对位置变化的敏感性,同时降低模型的计算复杂度。
循环层是LSTM等序列式模型的核心组件,它能够捕捉到输入序列中的长期依赖关系。在CRNN中,循环层通常被用来对CNN提取出的特征序列进行建模。例如,我们可以使用一个或多个LSTM层来处理从卷积层中得到的特征序列,以便更好地解析序列中的信息。
全连接层是神经网络中最简单的一种层,它将所有输入节点与输出节点相连,通常用于最终的分类任务。在CRNN中,我们可以在循环层之后添加一个或多个全连接层来输出识别结果。
二、CRNN的实现
下面我们将介绍如何使用Keras框架来实现一个简单的CRNN模型,用于手写数字识别任务。
我们将使用MNIST数据集来进行手写数字识别任务。该数据集包括60000个28x28像素的训练图像和10000个测试图像,每个图像都代表0-9中的一个数字。首先,我们需要下载并加载数据集:
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
接下来,我们将把输入图像转换成灰度图像,并将每个像素值缩放到[0,1]范围内:
import numpy as np
# 将输入图像转换成灰度图像,并将像素归一化到[0, 1]范围内
x_train = np.expand_dims(x_train.astype('float32') / 255., axis=-1)
x_test = np.expand_dims(x_test.astype('float32') / 255., axis=-1)
最后,我们需要将标签转换成one-hot编码:
from keras.utils import to_categorical
# 将标签转换成one-hot编码
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)
接下来,我们将使用Keras框架搭建一个简单的CRNN模型。首先,我们定义输入层:
from keras.layers import Input
input_shape = x_train.shape[1:]
inputs = Input(shape=input_shape, name='input')
然后,我们添加四个卷积层和池化
层,用于提取图像的空间特征:
from keras.layers import Conv2D, MaxPooling2D
# 添加卷积层和池化层
x = Conv2D(32, (3, 3), padding='same', activation='relu', name='conv1')(inputs)
x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name='pool1')(x)
x = Conv2D(64, (3, 3), padding='same', activation='relu', name='conv2')(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name='pool2')(x)
x = Conv2D(128, (3, 3), padding='same', activation='relu', name='conv3')(x)
x = MaxPooling2D(pool_size=(2, 1), strides=(2, 1), name='pool3')(x)
x = Conv2D(256, (3, 3), padding='same', activation='relu', name='conv4')(x)
接下来,我们将通过LSTM对特征序列进行建模。在这里,我们使用两个LSTM层,每个层输出128个隐藏状态:
from keras.layers import Reshape, LSTM
# 将特征序列展开成二维张量
x = Reshape((-1, 256))(x)
# 添加LSTM层
x = LSTM(128, return_sequences=True)(x)
x = LSTM(128)(x)
最后,我们添加一个全连接层和一个softmax层,用于输出识别结果:
from keras.layers import Dense, Activation
# 添加全连接层和softmax层
x = Dense(10)(x)
outputs = Activation('softmax', name='softmax')(x)
现在,我们可以编译模型并开始训练了。在这里,我们将使用Adam优化器和交叉熵损失函数:
from keras.models import Model
# 定义模型
model = Model(inputs=inputs, outputs=outputs)
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_test, y_test))
训练完成后,我们可以使用测试集对模型进行评估:
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
在本例中,模型在测试集上的准确率为98.8%。
三、总结
本文介绍了卷积循环神经网络(CRNN)的基本原理和实现过程。CRNN是一种结合了CNN和LSTM等深度学习模型的网络,常用于图像识别和自然语言处理等领域。我们以手写数字识别任务为例,使用Keras框架搭建了一个简单的CRNN模型,并通过MNIST数据集进行训练和评估。希望读者能够从本文中学到有关CRNN的基础知识和实践经验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12