京公网安备 11010802034615号
经营许可证编号:京B2-20210330
卷积神经网络(Convolutional Neural Network,简称CNN)是一类常用于图像识别、语音识别等领域的深度学习模型。其中最重要的部分就是卷积操作。那么,什么是卷积操作呢?
在介绍卷积之前,我们需要先了解一下信号处理中的卷积。信号处理中的卷积是指将两个函数进行加权平均得到一个新的函数。具体而言,如果有两个函数$f$和$g$,它们的卷积是这样定义的:
$$int_{-infty}^infty f(tau)g(t-tau)dtau$$
这个式子看起来比较抽象,但可以通过一个例子来理解。假设我们有一个长度为$5$的离散信号序列$x=[1,2,3,4,5]$,另一个信号序列$h=[1,1,1]$,则$h$的卷积核为:
$$h=[1,1,1] Rightarrow h[-1]=h[0]=h[1]=1, h[2]=0, h[3]=h[4]=...=0$$
我们可以将$x$和$h$像这样摆放:
$$x = [1, 2, 3, 4, 5]$$ $$h = [1, 1, 1, 0, 0]$$
然后,我们将$h$翻转过来,再将它与$x$对齐,从第一个数开始相乘,求和并得到新序列的第一个元素;接着,我们将$h$向右移动一个单位,再次将它与$x$对齐,并得到新序列的第二个元素……直到$h$覆盖完整个$x$序列,得到如下结果:
$$y=[3,6,9,12,15,0,0]$$
在卷积神经网络中,卷积操作基本上是按照这个流程进行的。不同之处在于,我们通常使用多个卷积核来提取图像的特征。每个卷积核都是一个小的矩阵,例如$3 times 3$或$5 times 5$,它们会滑动在输入图像的每个位置,计算某个输出特征图上的一个像素值。
假设我们有一个$5 times 5$的输入图像$I$,和一个大小为$3 times 3$的卷积核$K$,则卷积操作可以表示为:
$$O_{i,j}= sum_msum_n I_{i+m,j+n}K_{m,n}$$
其中,$O$是输出特征图,$I$是输入图像,$K$是卷积核,$i,j$是输出特征图上的位置,$m,n$是卷积核内的位置。这个式子表示,在输出特征图上的每个位置$(i,j)$,都会以此滑动$K$,计算输入图像$I$上所有与$K$重合的位置处的像素值与$K$内的系数的乘积,最后将这些乘积相加得到输出特征图上相应位置的像素值。
这个过程可以用下图表示:

在实际应用中,我们通常使用多个卷积核进行卷积操作。这些卷积核可以对输入图像进行不同的特征提取,例如检测边缘、角点、纹理等。因此,一个卷积层通常会产生多个特征图,每个特征图对应一个卷
积核。在深度学习中,这些卷积核是通过反向传播算法自适应学习得到的,以最大化网络的分类性能。
除了卷积操作,卷积神经网络还包括池化、激活函数等操作。其中,池化操作用于降低特征图的尺寸和维度,减少计算量并增强模型的鲁棒性;激活函数则用于引入非线性变换,使网络能够学习更加复杂的特征。
总之,卷积神经网络中的卷积操作是一种基本的特征提取方式,它可以将输入图像中的局部信息进行组合,从而得到更加丰富的特征表示。卷积神经网络的设计和训练都是围绕着卷积操作展开的,因此对卷积操作的理解至关重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12