
Matplotlib是Python中广泛使用的绘图库之一。它具有丰富的图形功能,可以用于绘制各种类型的图表,包括线条图、散点图、饼图、柱状图和热度图(heatmap)等。
热度图是一种用颜色来表示数据值大小的二维图表。通常,热度图用于可视化矩阵或表格式数据,并以不同的颜色来区分不同数值的数据。在本文中,我们将介绍如何使用matplotlib制作热度图。
首先,我们需要准备一个数据集来绘制热度图。这里我们将使用numpy包生成一个随机的 $ 10 times 10 $ 的矩阵来模拟一个数据集:
import numpy as np
data = np.random.rand(10, 10)
生成的 data
矩阵如下所示:
array([[0.82028575, 0.76881294, 0.71971194, 0.30491486, 0.67111979,
0.17771597, 0.80438331, 0.27302774, 0.18129643, 0.63314806],
[0.77143625, 0.63551487, 0.56306356, 0.41241424, 0.47234638,
0.30451328, 0.65190823, 0.47868446, 0.03420709, 0.39056214],
[0.88830154, 0.0510874 , 0.04667507, 0.63655448, 0.1009649 ,
0.53011341, 0.88860116, 0.8072012 , 0.2627727 , 0.16129027],
[0.03957677, 0.88986948, 0.29828759, 0.34845264, 0.07125663,
0.85638637, 0.08063718, 0.65769739, 0.41561651, 0.82219976],
[0.01306113, 0.02081601, 0.00762399, 0.52039123, 0.36600046,
0.24940888, 0.21817512, 0.94152895, 0.14410661, 0.5584188 ],
[0.18524447, 0.86325457, 0.70310962, 0.17384236, 0.56810572,
0.05814711, 0.14610126, 0.76581545, 0.36524594, 0.0123577 ],
[0.69838845, 0.54777405, 0.51271685, 0.74905936, 0.04087629,
0.60057023, 0.27027469, 0.7392686 , 0.04315166, 0.09859514],
[0.79271592, 0.69936978, 0.17137361, 0.63954807, 0.19399017,
0.38978258, 0.3345555 , 0.33223096, 0.03575185, 0.527903 ],
[0.20489367, 0.00811152, 0.35635863, 0.67832791, 0.0613843 ,
0.70448221, 0.85365584, 0.88137019, 0.14431136, 0.59657908],
[0.28042776, 0.765406 , 0.53737002, 0.89526902, 0.61241154,
0.2861603 , 0.69044175, 0.11878924, 0.75902697, 0.28845139]])
接下来
,我们可以使用matplotlib.pyplot.imshow()
函数来绘制热度图。此函数接受一个二维数组作为输入,并将其以颜色编码的形式显示出来。
import matplotlib.pyplot as plt
plt.imshow(data)
plt.show()
执行上述代码后,会生成一个如下所示的热度图:
在热度图中,每个单元格的颜色表示该单元格对应的值大小。默认情况下,imshow()
会根据数据范围自动选择颜色映射(colormap)。
我们可以通过设置cmap
参数指定不同的颜色映射。常用的颜色映射包括'viridis'、'plasma'和'magma'等。例如,如果使用'magma'颜色映射,则可以通过以下方式进行设置:
plt.imshow(data, cmap='magma')
plt.show()
运行上述代码会生成以下热度图:
通常,在绘制热度图时,我们可能需要添加行列标签以更好地解释数据。这可以通过设置xticks
和yticks
参数来完成。我们可以在imshow()
函数之前添加以下两行代码来设置行列标签:
plt.xticks(range(10), ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
plt.yticks(range(10), ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'])
上述代码将行列标签分别设置为字母'a'到'j'和大写字母'A'到'J'。然后再次运行imshow()
函数,就可以得到带有行列标签的热度图:
最后,我们可以通过添加一个颜色刻度表来说明热度图中每种颜色代表的数据值范围。这可以通过使用colorbar()
函数来完成。
plt.colorbar()
plt.show()
上述代码使热度图显示一个颜色刻度表,其中最小值为0.0,最大值为1.0。
本文介绍了如何使用matplotlib制作热度图。我们首先准备了一个随机的 $ 10 times 10 $ 的数据集,然后使用imshow()
函数绘制了热度图,设置了行列标签和颜色映射,并添加了一个颜色刻度表以说明颜色代表的数据值范围。
热度图是一种可视化工具,可用于探索数据集中的模式和趋势,或者比较不同数据集之间的差异。使用matplotlib绘制热度图非常简单且灵活,可以根据需求自由调整样式和布局,进而提高数据可视化的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28