京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在这篇文章中,我将给出三种方法,在这些方法中,您可以自己获得实际的数据科学经验。通过完成这些项目,您将对SQL、Pandas和Machine learning Modeling有更好的理解。
话虽如此,让我们潜入其中吧!
如果你想成为一名数据科学家,你就得有很强的SQL技能。Mode提供了三个模拟实际业务问题的实际SQL案例研究,以及一个在线SQL编辑器,您可以在其中编写和运行查询。
要打开模式的SQL编辑器,请转到此链接并单击超链接,其中显示“打开另一个窗口到模式”。
学习SQL
如果您是SQL新手,我将首先从Mode的SQL教程开始,在那里您可以学习基本、中级和高级SQL技术。如果您已经对SQL有了很好的了解,可以跳过这个。
案例研究1:调查用户参与度下降
这个案例的目的是确定Yammer项目用户参与度下降的原因。在深入研究数据之前,您应该在这里阅读Yammer的概述。您应该使用4个表。
到案例的链接将为您提供更多关于问题、数据和应该回答的问题的详细信息。
如果你想要指导,请看看我是如何处理这个案例研究的。
案例研究2:理解搜索功能
本案例更侧重于产品分析。在这里,您需要深入到数据中,并确定用户体验是好是坏。这个案例的有趣之处在于,决定“好”和“坏”的含义以及如何评估用户体验取决于您。
案例研究3:验证A/B测试结果
最实用的数据科学应用程序之一是执行A/B测试。在这个案例研究中,您将深入研究a/B测试的结果,其中对照组和治疗组之间有50%的差异。在这种情况下,您的任务是在彻底分析后验证或使结果无效。
当我第一次开始开发机器学习模型时,我发现我缺乏熊猫技能是我所能做的一个很大的限制。不幸的是,与Python和SQL不同,互联网上没有太多的资源允许您练习Pandas的技能。
然而,几周前,我访问了这个资源-这是一个专门针对熊猫的充满实践问题的存储库。通过完成这些练习问题,您将知道如何:
如果你能完成这些练习问题,你应该能够自信地说你知道如何使用Pandas进行数据科学项目。它还将为您的下一节提供显著帮助。
获得数据科学经验的最好方法之一是创建自己的机器学习模型。这意味着找到一个公共数据集,定义一个问题,并用机器学习解决这个问题。
Kaggles是世界上最大的数据科学社区之一,有数百个数据集可供选择。下面是一些你可以用来开始的想法。
预测葡萄酒质量
此数据集包含关于各种葡萄酒、它们的组成和葡萄酒质量的数据。这可能是一个回归或分类问题,这取决于您如何构建它。看看你是否能预测一个红葡萄酒的质量给11个输入(固定酸度,挥发性酸度,柠檬酸,残糖,氯化物,游离二氧化硫,总二氧化硫,密度,pH,硫酸盐和酒精。
如果您想要为该数据集创建机器学习模型的指导,请查看我的方法此处.
二手车价格估算器
Craigslist是世界上最大的二手车销售收藏库。此数据集由Craigslist中的刮擦数据组成,每隔几个月更新一次。使用此数据集,看看是否可以创建一个数据集来预测汽车上市是否已经结束或价格过低。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04