京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在这篇文章中,我将给出三种方法,在这些方法中,您可以自己获得实际的数据科学经验。通过完成这些项目,您将对SQL、Pandas和Machine learning Modeling有更好的理解。
话虽如此,让我们潜入其中吧!
如果你想成为一名数据科学家,你就得有很强的SQL技能。Mode提供了三个模拟实际业务问题的实际SQL案例研究,以及一个在线SQL编辑器,您可以在其中编写和运行查询。
要打开模式的SQL编辑器,请转到此链接并单击超链接,其中显示“打开另一个窗口到模式”。
学习SQL
如果您是SQL新手,我将首先从Mode的SQL教程开始,在那里您可以学习基本、中级和高级SQL技术。如果您已经对SQL有了很好的了解,可以跳过这个。
案例研究1:调查用户参与度下降
这个案例的目的是确定Yammer项目用户参与度下降的原因。在深入研究数据之前,您应该在这里阅读Yammer的概述。您应该使用4个表。
到案例的链接将为您提供更多关于问题、数据和应该回答的问题的详细信息。
如果你想要指导,请看看我是如何处理这个案例研究的。
案例研究2:理解搜索功能
本案例更侧重于产品分析。在这里,您需要深入到数据中,并确定用户体验是好是坏。这个案例的有趣之处在于,决定“好”和“坏”的含义以及如何评估用户体验取决于您。
案例研究3:验证A/B测试结果
最实用的数据科学应用程序之一是执行A/B测试。在这个案例研究中,您将深入研究a/B测试的结果,其中对照组和治疗组之间有50%的差异。在这种情况下,您的任务是在彻底分析后验证或使结果无效。
当我第一次开始开发机器学习模型时,我发现我缺乏熊猫技能是我所能做的一个很大的限制。不幸的是,与Python和SQL不同,互联网上没有太多的资源允许您练习Pandas的技能。
然而,几周前,我访问了这个资源-这是一个专门针对熊猫的充满实践问题的存储库。通过完成这些练习问题,您将知道如何:
如果你能完成这些练习问题,你应该能够自信地说你知道如何使用Pandas进行数据科学项目。它还将为您的下一节提供显著帮助。
获得数据科学经验的最好方法之一是创建自己的机器学习模型。这意味着找到一个公共数据集,定义一个问题,并用机器学习解决这个问题。
Kaggles是世界上最大的数据科学社区之一,有数百个数据集可供选择。下面是一些你可以用来开始的想法。
预测葡萄酒质量
此数据集包含关于各种葡萄酒、它们的组成和葡萄酒质量的数据。这可能是一个回归或分类问题,这取决于您如何构建它。看看你是否能预测一个红葡萄酒的质量给11个输入(固定酸度,挥发性酸度,柠檬酸,残糖,氯化物,游离二氧化硫,总二氧化硫,密度,pH,硫酸盐和酒精。
如果您想要为该数据集创建机器学习模型的指导,请查看我的方法此处.
二手车价格估算器
Craigslist是世界上最大的二手车销售收藏库。此数据集由Craigslist中的刮擦数据组成,每隔几个月更新一次。使用此数据集,看看是否可以创建一个数据集来预测汽车上市是否已经结束或价格过低。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29