京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学是近年来最热门的领域之一,吸引了大量人才加入顶级公司数据科学团队的竞争。有很多文章教你DS面试的toprep如何“从其他面试者中脱颖而出”,但旅程肯定不会止步于被录用。得到一份工作只是第一步;然而,没有多少人谈论一旦你通过面试并加入公司,你如何从其他受雇的数据科学家中脱颖而出。
在麦肯锡的几年里,我有幸与麦肯锡和我服务过的顶级公司的无数聪明的数据科学家共事,并观察到了那些获得合作伙伴和客户最高评级和赞扬的共同特征。也许你们中的一些人会感到惊讶,表现最好的数据科学家不一定是那些构建最出色的模型或编写最高效代码的人(当然,他们必须清除相当高的技术技能标准才能被雇用),而是那些除了分析能力之外还拥有许多重要的“软技能”的人。这篇文章总结了我在麦肯锡工作期间的经验和观察,总结了5个教训,这些教训将帮助你成为一名更好的数据科学家。
作为一个热爱精确的数据人员,我想指出,尽管“数据科学家”作为一个标题涵盖了当今行业中的广泛工作,但在本文中,我主要关注的是对以任何形式影响业务决策的数据科学家(而不是那些更面向研究的“核心数据科学”角色)的提示。
自上而下的沟通,或称金字塔原则,是麦肯锡合伙人芭芭拉·明托创造并推广的,被许多人视为商业(甚至个人生活)中最有效的沟通结构。尽管这是战略顾问等一些人的第二天性,但许多数据科学家在沟通方面会被绊倒。想法很简单:当你试图沟通一个想法/论点时,如果你以关键信息开始,然后是支持这一关键信息的几个主要论点是最有效的,也是最容易让观众理解的;如果需要,每个参数后面都可以跟支持数据。
采用自上而下的通信是有利的,原因如下:
不幸的是,对于数据科学家来说,他们的工作大部分时间都在进行深入的分析,这种通信结构可能不是自然的,而且可能违反直觉。我经常看到数据科学家以深入的细节开始演示或交流,但没有传达关键信息,就让观众迷失了方向。
如何实践:一个简单的实践方法是在会议之前根据这种结构记下你的想法,以便在交流分析的关键发现时保持正确。经常退一步问问自己你真正想解决的是什么问题也很有帮助;那应该是你传达的关键信息。
如果你看看麦肯锡为公司数据组织设计的suggestedblueprint,它强调了一个名为“翻译家”的角色的重要性,这个角色被认为是业务和数据团队之间沟通的桥梁,将分析洞察力转化为业务可操作的洞察力(我认为这个角色部分源于对我上面提到的观点的失望)。我敢肯定,作为一名数据科学家,你被要求“像你向一个五岁的孩子解释一样解释它”或“用简单的英语解释它”。从其他人中脱颖而出的数据科学家正是能够做到这一点的人--充当自己的翻译;如果有人问他们,他们可以向既没有分析背景也没有时间阅读白皮书的首席执行官很好地解释他们的ML模型,而且他们总是可以将分析结果与业务影响联系起来。这些数据科学家受到重视的原因如下:
如何实践:与朋友(最好是没有任何分析背景的朋友)一起实践,向他们解释您的模型/分析(当然不透露任何敏感信息)。这也是在你的方法中发现知识差距的一个很好的方法;就像“伟大的解释者”理查德·费曼认为的那样,如果你不知道如何用简单的方式解释某事,很多时候是因为你自己没有很好地理解它。
这不仅限于数据人才;对于公司的任何职能/角色的人来说,这都是必不可少的。当然,能够发现问题并提出担忧是非常有价值的,但更值得赞赏的是提出潜在解决方案的能力。没有一个解决方案驱动的人在房间里,讨论往往会绕圈子,痴迷于问题,而不是试图找出前进的道路。
在大多数顶级咨询公司,解决方案驱动是一号法则,在我看来,这种方法也应该转移到技术领域。作为一名数据科学家,当人们由于缺乏分析背景而提出荒谬的数据要求时,您可能会经常经历令人沮丧的情况。我见过无数DS不知道如何处理这些情况,并因经常唱反调而在涉众管理中失败。与其关闭它们,不如以解决方案为导向,帮助它们重新定义请求,并利用您对数据和分析工具的更好理解来限制范围。
以解决方案为导向并不意味着你永远不能对任何事情说不,或者总是必须已经起草了完美的解决方案;这意味着你应该在你说的每一个“不”之后总是有一个“但是怎么样……”。
如何实践:遇到问题时,在向团队或经理提出问题之前,先考虑一下解决问题的潜在方法。在解决问题时发挥你的创造力,不要害怕自己会提出新的解决方案。从扩展到您的工作流并了解更多关于业务和其他团队工作的信息也很有帮助。了解全局通常有助于将点点滴滴联系起来,并引导你找到创造性的解决方案。
没有人真的想预测流失,每个人都在试图理解流失
如今,当每一家公司都在建立预测流失的模型时,很难后退一步问问自己,我们最初为什么要预测流失。公司希望预测流失,这样他们就可以找到一个可行的解决方案来防止它。因此,如果您的模型告诉首席执行官“web访问量的立方根是表示流失的最重要的特征之一”,他可以用这些信息做什么?可能没什么…
作为一名数据科学家,就像你们中的许多人一样,我过去在建模时只关注准确性,将其作为的成功度量标准。但我逐渐意识到,如果不能将其与业务影响联系起来,那么通过添加无法解释的特性和微调超参数将准确率从96%提高到98%对业务毫无意义(同样,这只适用于面向业务的DS,对于ML的某些领域,这种提高可能意味着整个世界)。
如果模型是一个黑箱,也很难从C级高管那里获得可信度。模型是一个在一天结束时指导业务决策的工具,所以它的价值很大程度上是基于它的实用性和可解释性也就不足为奇了。
如何实践:在构建模型或进行分析时,始终牢记业务影响。当建立模型时,避免向模型投掷随机的交互特征,希望其中一个会坚持;相反,在开始构建模型之前,要对特性工程阶段进行深思熟虑。写下从模型/分析中得出的业务建议也将帮助您重新评估在构建模型时所做的设计选择。
从特征探索到探索性数据分析(EDA),假设作为大多数分析的起点是很重要的。如果没有假设,您将无法指导如何为EDA切片和切分数据,或者首先测试哪些特性。没有假设,甚至没有必要进行AB测试(这就是为什么它被称为假设测试)。但是,我经常看到数据科学家在没有明确假设的情况下钻研头朝下的分析阶段,然后在兔子洞里迷失了方向。或者更常见的情况是,数据科学家将假设结构化的过程完全留给团队成员,而团队成员对数据没有可见性,后来才意识到没有足够的数据来检验这些假设。在我看来,最好的方法是让数据科学家从一开始就参与这些假设的头脑风暴会议,并使用假设来指导后续的分析并确定优先级。
假设很重要,它们应该作为起点,而不是终点。我一次又一次地看到许多数据科学家(或与数据科学家一起工作的人)坚持一个假设,尽管发现相互矛盾。这种对最初假设的“忠诚”将导致数据窥探和按摩数据以适应某种叙述。如果你熟悉“辛普森悖论”,你就能理解数据在讲述“错误故事”方面的力量。优秀的数据科学家应该能够保持数据的完整性,并将叙述转向符合数据,而不是相反。
如何实践:为了提出好的假设,建立业务理解和敏锐度是很重要的。在探索数据的过程中,让假设留在你的脑海中,以指导你,但当数据告诉你一个不同于你最初“受过教育的猜测”的故事时,要虚心承认。有一个良好的商业意识也会帮助你调整你最初的理论,并根据数据调整你的叙述。
当谈到面向业务的角色时,人们往往认为人才可以分为两类:分析型和战略型,似乎这两种能力是对立的。好吧,我会告诉你一个秘密,最好的分析人才是那些同时理解事情的战略/业务方面并理解如何与业务利益相关者沟通的人,而战略角色中最好的人才对分析和数据有一定程度的理解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01