
我只想在前言中说,这篇文章更多地反映了我是如何走到今天的。我并不是说你会通过遵循同样的步骤来实现同样的事情,但我认为这可能会为你提供一个独特的视角,这是你以前可能没有想过的。
说到这里,让我们深入研究一下吧!
为了让我的收入翻一番,我主要做了三件事:
今天,许多人倾向于像比特币这样的高风险、高回报投资,试图“快速致富”,但正如沃伦·巴菲特所说,你能做的最好的投资是在自己身上。对于那些没有钱投资但又想改善财务状况的人来说尤其如此。
通过简单地提高自己的技能,学习数据科学和机器学习,我在一年内将工资提高了40%。
在过去的一年里,我主要关注三个领域:
数据操作(SQL/Pandas)
在我看来,使用SQL和Pandas进行数据操作是最重要的领域,给我带来了最大的好处。从我的经验来看,最多的时间花在查询数据、探索数据和争论数据上,所有这些都需要SQL和Pandas。在我所有与数据相关的工作中(增长营销分析师、数据分析师、数据科学家),SQL一直是一个共同的标准,可以说是数据专业人员最重要的技能。
以下是我用来自学SQL和Pandas的资源:
脚本(Python)
我开始使用Python是因为学校的原因,我可能会在我的余生中坚持使用Python。它在开源贡献方面遥遥领先,而且学习起来很简单。
我强烈推荐以下两个主要资源来开发您的Python技能(除了做辅助项目之外):
但是当然,不学习机器学习,做一个数据科学家是多么有趣啊!下面是我在职业生涯开始时使用的两个最重要的资源。
如果你想了解各种机器学习算法,请查看我在这里的文章。
我实际上写了一个为期52周的课程,包括SQL、Pandas、Python和机器学习,你可以在这里查看。
既然我已经介绍了我在哪些方面提高了自己的技能,您可能想知道我是如何做到这一点的,这就是我接下来要讨论的内容。
你们中的一些人可能知道,我发起了一个名为“数据科学和机器学习52周”的个人倡议,在那里,我每周学习、编码和写一些与数据科学和机器学习有关的东西,持续了整整一年。这主要是为了让我能够在持续的基础上保持自己学习新东西的责任感。
在写了100多篇文章,建立了2万多名读者的追随者基础后,写作现在占了我总收入的25%左右。
以下是三个让我获得成功的秘诀:
提示#1:找到你擅长写的东西、你喜欢写的东西和人们喜欢读的东西之间的交集。
这是我总是给有抱负的作家的第一个提示。理想情况下,你想找到一个利基,满足所有这三个东西。
如果你发现了一些你擅长写的东西,你也喜欢写它,但人们不喜欢读它,那么你就不会建立一个追随者基础(假设你关心这一点)。
如果你发现了一个你擅长写的话题,人们喜欢读它,但你不喜欢写它,那么你就不会持续太久,因为你会失去兴趣。
最后,如果你发现了一个你喜欢写的话题,人们也喜欢读它,但你不擅长写它(例如,因为你没有足够的专业知识),那么你可能不会得到任何吸引力。
所以,在你旅程的开始,找出你的利基。我将在技巧3中详细说明这一点。
技巧#2:理解您正在编写的平台的机制。
无论您是使用Medium、Substack、Patreon还是其他博客平台,请确保您花时间了解该平台是如何工作的。
我不能说太多细节,但理解收入是计算出来的,平台如何帮助你自己做广告,诸如此类的事情是需要考虑的重要事情。
通过了解媒体的机制和它是如何工作的,我能够最大限度地扩大我的外联,最终更快地增长我的追随者基础。
下一个技巧将帮助您实现技巧1和2:
提示#3:在创建内容时考虑“利用vs.探索”的概念。
为了找到技巧1中这三个方面的交叉点,并理解您正在编写的平台的机制,请考虑开发vs.探索的概念。
这个想法来自一个名为“多臂强盗问题”的统计问题。我不想太详细,但“探索和利用”背后的主要思想是决定是探索并发现新的潜在想法,还是利用您已经知道的有效想法。
在你写作/写博客生涯的开始,探索和尝试尽可能多的想法,看看什么最适合你,这是你最感兴趣的。这意味着写不同的主题,在不同的出版物上发表,并可能尝试新的写作风格。
随着你在写作风格和偏好上的发展,你可能会偶然发现一个“食谱”,让你在写作中取得持续的成功。这时你可以开始利用这个突破,在你的秘密公式上加倍努力。
总而言之,在你的旅程的早期尽可能多地探索,当你开始定义自己并找到成功时,开始利用那些让你成功的洞察力和想法。
我剩下的一点收入来自与数据科学和机器学习相关的自由职业项目。我从事的项目包括撰写技术论文、撰写营销内容和建立模型。
当我刚开始工作时,我只从自由职业项目中获得最低工资。这是有道理的,因为我没有太多的经验,我也不知道我值多少钱。然而,到了年底,我可以每小时收取50美元以上的费用。
我的大部分收入来自科技行业的老客户。事实上,我也不必接触其他人--我可以通过我的数据科学和机器学习博客来吸引客户的注意力,我认为这是本文的重点。
我的数据科学和机器学习博客不仅帮助我在一致的基础上学习,还帮助我建立了自己的追随者基础,并帮助我获得了几个自由职业客户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09