
作者:俊欣
来源:关于数据分析与可视化
今天来分享一个高效率的数据清洗的方法,毕竟我们平常在工作和生活当中经常会遇到需要去处理杂七杂八的数据集,有一些数据集中有缺失值、有些数据集中有极值、重复值等等。这次用到的数据集样本在文末有获取的办法。
我们首先导入所需要用到的库,并且读取数据
import pandas as pd import numpy as np
df = pd.read_csv("DirectMarketing.csv")
我们先来大致地看一下数据集中各个特征值的情况,通过info()这个方法
df.info()
我们看到上面的“History”这一列,只有697条数据不是空值,那就意味着还有另外3条数据是空值,与之对应的方式有将含有缺失值的数据删掉,或者将缺失值的部分替换为是中位数或者是平均数,
# 将缺失值给移除掉 df.dropna(axis = 0, inplace = True)
要是数据集中存在大量的缺失值,只是简简单单地移除掉怕是会影响到数据的完整性,如果是数值类型的特征值,就用用平均值或者是中位数来替换,如果是离散类型的缺失值,就用众数来替换
def fill_missing_values_num(df, col_name): val = df[col_name].median()
df[col_name].fillna(val, inplace = True) return df
def fill_missing_values_cate(df, col_name): val = df[col_name].value_counts().index.tolist()[0]
df[col_name].fillna(val, inplace = True) return df
而可能存在重复值的部分,pandas当中有drop_ducplicates()方法来进行处理
df.drop_duplicates(inplace = True)
最后我们封装成一个函数,对于缺失值的处理小编这里选择用中位数填充的方式来处理
def fill_missing_values_and_drop_duplicates(df, col_name): val = df[col_name].value_counts().index.tolist()[0]
df[col_name].fillna(val, inplace = True) return df.drop_duplicates()
经常使用pandas的人可能都有这种体验,它经常会将数据集中的变量类型直接变成object,这里我们可以直接使用“convert_dtypes”来进行批量的转换,它会自动推断数据原来的类型,并实现转换,并且打印出来里面各列的数据类型,封装成一个函数
def convert_dtypes(df): print(df.dtypes) return df.convert_dtypes()
对于极值的检测有多种方式,例如我们可以通过箱型图的方式来查看
sample = [11, 500, 20, 24, 400, 25, 10, 21, 13, 8, 15, 10] plt.boxplot(sample, vert=False) plt.title("箱型图来检测异常值",fontproperties="SimHei") plt.xlabel('样本数据',fontproperties="SimHei")
我们可以通过箱型图来明显的看出当中有两个异常值,也就是400和500这两个,箱型图由最大值、上四分位数(Q3)、中位数(Q2)、下四分位数和最小值五个统计量组成,其中Q1和Q3之间的间距称为是四分位间距(interquartile range,IQR),而通常若是样本中的数据大于Q3+1.5IQR和小于Q1-1.5IQR定义为异常值
当然了除此之外,还可以通过z-score的方法来检测,Z-score是以标准差为单位去度量某个数据偏离平均数的距离,计算公式为
我们用python来实现一下当中的步骤
outliers = [] def detect_outliers_zscore(data, threshold): mean = np.mean(data) std = np.std(data) for i in data: z_score = (i-mean)/std if (np.abs(z_score) > threshold): outliers.append(i) return outliers# Driver code
而对待异常值的方式,首先最直接的就是将异常值给去掉,我们检测到异常值所在的行数,然后删掉该行,当然当数据集当中的异常值数量很多的时候,移除掉必然会影响数据集的完整性,从而影响建模最后的效果
def remove_outliers1(df, col_name): low = np.quantile(df[col_name], 0.05)
high = np.quantile(df[col_name], 0.95) return df[df[col_name].between(low, high, inclusive=True)]
其次我们可以将异常值替换成其他的值,例如上面箱型图提到的上四分位数或者是下四分位数
def remove_outliers2(df, col_name): low_num = np.quantile(df[col_name], 0.05) high_num = np.quantile(df[col_name], 0.95) df.loc[df[col_name] > high_num, col_name] = high_num df.loc[df[col_name] < low_num , col_name] = low_num return df
因此回到上面用到的样本数据集,我们将之前数据清洗的函数统统整合起来,用pipe()的方法来串联起来,形成一个数据清洗的标准模板
def fill_missing_values_and_drop_duplicates(df, col_name): val = df[col_name].value_counts().index.tolist()[0]
df[col_name].fillna(val, inplace = True) return df.drop_duplicates() def remove_outliers2(df, col_name): low_num = np.quantile(df[col_name], 0.05)
high_num = np.quantile(df[col_name], 0.95)
df.loc[df[col_name] > float(high_num), col_name] = high_num return df def convert_dtypes(df): print(df.dtypes) return df.convert_dtypes()
df_cleaned = (df.pipe(fill_missing_values_and_drop_duplicates, 'History').
pipe(remove_outliers2, 'Salary').
pipe(convert_dtypes))
所以我们之后再数据清洗的过程当中,可以将这种程序化的清洗步骤封装成一个个函数,然后用pipe()串联起来,用在每一个数据分析的项目当中,更快地提高我们工作和分析的效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27